TensorFlow C++ API Reference

array_ops

Members

tensorflow::ops::BatchToSpace BatchToSpace for 4-D tensors of type T.
tensorflow::ops::BatchToSpaceND BatchToSpace for N-D tensors of type T.
tensorflow::ops::Bitcast Bitcasts a tensor from one type to another without copying data.
tensorflow::ops::BroadcastDynamicShape Return the shape of s0 op s1 with broadcast.
tensorflow::ops::BroadcastTo Broadcast an array for a compatible shape.
tensorflow::ops::CheckNumerics Checks a tensor for NaN and Inf values.
tensorflow::ops::Concat Concatenates tensors along one dimension.
tensorflow::ops::ConjugateTranspose Shuffle dimensions of x according to a permutation and conjugate the result.
tensorflow::ops::DebugGradientIdentity Identity op for gradient debugging.
tensorflow::ops::DebugGradientRefIdentity Identity op for gradient debugging.
tensorflow::ops::DeepCopy Makes a copy of x.
tensorflow::ops::DepthToSpace DepthToSpace for tensors of type T.
tensorflow::ops::Dequantize Dequantize the 'input' tensor into a float or bfloat16 Tensor.
tensorflow::ops::Diag Returns a diagonal tensor with a given diagonal values.
tensorflow::ops::DiagPart Returns the diagonal part of the tensor.
tensorflow::ops::EditDistance Computes the (possibly normalized) Levenshtein Edit Distance.
tensorflow::ops::Empty Creates a tensor with the given shape.
tensorflow::ops::EnsureShape Ensures that the tensor's shape matches the expected shape.
tensorflow::ops::ExpandDims Inserts a dimension of 1 into a tensor's shape.
tensorflow::ops::ExtractImagePatches Extract patches from images and put them in the "depth" output dimension.
tensorflow::ops::ExtractVolumePatches Extract patches from input and put them in the "depth" output dimension.
tensorflow::ops::FakeQuantWithMinMaxArgs Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same shape and type.
tensorflow::ops::FakeQuantWithMinMaxArgsGradient Compute gradients for a FakeQuantWithMinMaxArgs operation.
tensorflow::ops::FakeQuantWithMinMaxVars Fake-quantize the 'inputs' tensor of type float via global float scalars.
tensorflow::ops::FakeQuantWithMinMaxVarsGradient Compute gradients for a FakeQuantWithMinMaxVars operation.
tensorflow::ops::FakeQuantWithMinMaxVarsPerChannel Fake-quantize the 'inputs' tensor of type float via per-channel floats.
tensorflow::ops::FakeQuantWithMinMaxVarsPerChannelGradient Compute gradients for a FakeQuantWithMinMaxVarsPerChannel operation.
tensorflow::ops::Fill Creates a tensor filled with a scalar value.
tensorflow::ops::Fingerprint Generates fingerprint values.
tensorflow::ops::Gather Gather slices from params according to indices.
tensorflow::ops::GatherNd Gather slices from params into a Tensor with shape specified by indices.
tensorflow::ops::GatherV2 Gather slices from params axis axis according to indices.
tensorflow::ops::GuaranteeConst Gives a guarantee to the TF runtime that the input tensor is a constant.
tensorflow::ops::Identity Return a tensor with the same shape and contents as the input tensor or value.
tensorflow::ops::IdentityN Returns a list of tensors with the same shapes and contents as the input.
tensorflow::ops::ImmutableConst Returns immutable tensor from memory region.
tensorflow::ops::InplaceAdd Adds v into specified rows of x.
tensorflow::ops::InplaceSub Subtracts v into specified rows of x.
tensorflow::ops::InplaceUpdate Updates specified rows 'i' with values 'v'.
tensorflow::ops::InvertPermutation Computes the inverse permutation of a tensor.
tensorflow::ops::MatrixBandPart Copy a tensor setting everything outside a central band in each innermost matrix to zero.
tensorflow::ops::MatrixDiag Returns a batched diagonal tensor with a given batched diagonal values.
tensorflow::ops::MatrixDiagPart Returns the batched diagonal part of a batched tensor.
tensorflow::ops::MatrixDiagPartV2 Returns the batched diagonal part of a batched tensor.
tensorflow::ops::MatrixDiagPartV3 Returns the batched diagonal part of a batched tensor.
tensorflow::ops::MatrixDiagV2 Returns a batched diagonal tensor with given batched diagonal values.
tensorflow::ops::MatrixDiagV3 Returns a batched diagonal tensor with given batched diagonal values.
tensorflow::ops::MatrixSetDiag Returns a batched matrix tensor with new batched diagonal values.
tensorflow::ops::MatrixSetDiagV2 Returns a batched matrix tensor with new batched diagonal values.
tensorflow::ops::MatrixSetDiagV3 Returns a batched matrix tensor with new batched diagonal values.
tensorflow::ops::MirrorPad Pads a tensor with mirrored values.
tensorflow::ops::OneHot Returns a one-hot tensor.
tensorflow::ops::OnesLike Returns a tensor of ones with the same shape and type as x.
tensorflow::ops::Pad Pads a tensor with zeros.
tensorflow::ops::PadV2 Pads a tensor.
tensorflow::ops::ParallelConcat Concatenates a list of N tensors along the first dimension.
tensorflow::ops::Placeholder A placeholder op for a value that will be fed into the computation.
tensorflow::ops::PlaceholderWithDefault A placeholder op that passes through input when its output is not fed.
tensorflow::ops::PreventGradient An identity op that triggers an error if a gradient is requested.
tensorflow::ops::QuantizeAndDequantizeV2 Quantizes then dequantizes a tensor.
tensorflow::ops::QuantizeAndDequantizeV3 Quantizes then dequantizes a tensor.
tensorflow::ops::QuantizeAndDequantizeV4 Quantizes then dequantizes a tensor.
tensorflow::ops::QuantizeAndDequantizeV4Grad Returns the gradient of QuantizeAndDequantizeV4 .
tensorflow::ops::QuantizeV2 Quantize the 'input' tensor of type float to 'output' tensor of type 'T'.
tensorflow::ops::QuantizedConcat Concatenates quantized tensors along one dimension.
tensorflow::ops::QuantizedInstanceNorm Quantized Instance normalization.
tensorflow::ops::SetDiff1D Computes the difference between two lists of numbers or strings.
tensorflow::ops::Stack Packs a list of N rank-R tensors into one rank-(R+1) tensor.
tensorflow::ops::Where Reshapes a quantized tensor as per the Reshape op.
tensorflow::ops::ZerosLike Returns a tensor of zeros with the same shape and type as x.

candidate_sampling_ops

Members

tensorflow::ops::AllCandidateSampler Generates labels for candidate sampling with a learned unigram distribution.
tensorflow::ops::ComputeAccidentalHits Computes the ids of the positions in sampled_candidates that match true_labels.
tensorflow::ops::FixedUnigramCandidateSampler Generates labels for candidate sampling with a learned unigram distribution.
tensorflow::ops::LearnedUnigramCandidateSampler Generates labels for candidate sampling with a learned unigram distribution.
tensorflow::ops::LogUniformCandidateSampler Generates labels for candidate sampling with a log-uniform distribution.
tensorflow::ops::UniformCandidateSampler Generates labels for candidate sampling with a uniform distribution.

control_flow_ops

Members

tensorflow::ops::Abort Raise a exception to abort the process when called.
tensorflow::ops::ControlTrigger Does nothing.
tensorflow::ops::LoopCond Forwards the input to the output.
tensorflow::ops::Merge Forwards the value of an available tensor from inputs to output.
tensorflow::ops::NextIteration Makes its input available to the next iteration.
tensorflow::ops::RefNextIteration Makes its input available to the next iteration.
tensorflow::ops::RefSelect Forwards the indexth element of inputs to output.
tensorflow::ops::RefSwitch Forwards the ref tensor data to the output port determined by pred.
tensorflow::ops::Switch Forwards data to the output port determined by pred.

core

Members

tensorflow::ClientSession A ClientSession object lets the caller drive the evaluation of the TensorFlow graph constructed with the C++ API.
tensorflow::Input Represents a tensor value that can be used as an operand to an Operation.
tensorflow::InputList A type for representing the input to ops that require a list of tensors.
tensorflow::Operation Represents a node in the computation graph.
tensorflow::Output Represents a tensor value produced by an Operation.
tensorflow::Scope A Scope object represents a set of related TensorFlow ops that have the same properties such as a common name prefix.
tensorflow::TensorBuffer

data_flow_ops

Members

tensorflow::ops::AccumulatorApplyGradient Applies a gradient to a given accumulator.
tensorflow::ops::AccumulatorNumAccumulated Returns the number of gradients aggregated in the given accumulators.
tensorflow::ops::AccumulatorSetGlobalStep Updates the accumulator with a new value for global_step.
tensorflow::ops::AccumulatorTakeGradient Extracts the average gradient in the given ConditionalAccumulator.
tensorflow::ops::Barrier Defines a barrier that persists across different graph executions.
tensorflow::ops::BarrierClose Closes the given barrier.
tensorflow::ops::BarrierIncompleteSize Computes the number of incomplete elements in the given barrier.
tensorflow::ops::BarrierInsertMany For each key, assigns the respective value to the specified component.
tensorflow::ops::BarrierReadySize Computes the number of complete elements in the given barrier.
tensorflow::ops::BarrierTakeMany Takes the given number of completed elements from a barrier.
tensorflow::ops::ConditionalAccumulator A conditional accumulator for aggregating gradients.
tensorflow::ops::DeleteSessionTensor Delete the tensor specified by its handle in the session.
tensorflow::ops::DynamicPartition Partitions data into num_partitions tensors using indices from partitions.
tensorflow::ops::DynamicStitch Interleave the values from the data tensors into a single tensor.
tensorflow::ops::FIFOQueue A queue that produces elements in first-in first-out order.
tensorflow::ops::GetSessionHandle Store the input tensor in the state of the current session.
tensorflow::ops::GetSessionHandleV2 Store the input tensor in the state of the current session.
tensorflow::ops::GetSessionTensor Get the value of the tensor specified by its handle.
tensorflow::ops::MapClear Op removes all elements in the underlying container.
tensorflow::ops::MapIncompleteSize Op returns the number of incomplete elements in the underlying container.
tensorflow::ops::MapPeek Op peeks at the values at the specified key.
tensorflow::ops::MapSize Op returns the number of elements in the underlying container.
tensorflow::ops::MapStage Stage (key, values) in the underlying container which behaves like a hashtable.
tensorflow::ops::MapUnstage Op removes and returns the values associated with the key.
tensorflow::ops::MapUnstageNoKey Op removes and returns a random (key, value)
tensorflow::ops::OrderedMapClear Op removes all elements in the underlying container.
tensorflow::ops::OrderedMapIncompleteSize Op returns the number of incomplete elements in the underlying container.
tensorflow::ops::OrderedMapPeek Op peeks at the values at the specified key.
tensorflow::ops::OrderedMapSize Op returns the number of elements in the underlying container.
tensorflow::ops::OrderedMapStage Stage (key, values) in the underlying container which behaves like a ordered.
tensorflow::ops::OrderedMapUnstage Op removes and returns the values associated with the key.
tensorflow::ops::OrderedMapUnstageNoKey Op removes and returns the (key, value) element with the smallest.
tensorflow::ops::PaddingFIFOQueue A queue that produces elements in first-in first-out order.
tensorflow::ops::ParallelDynamicStitch Interleave the values from the data tensors into a single tensor.
tensorflow::ops::PriorityQueue A queue that produces elements sorted by the first component value.
tensorflow::ops::QueueClose Closes the given queue.
tensorflow::ops::QueueDequeue Dequeues a tuple of one or more tensors from the given queue.
tensorflow::ops::QueueDequeueMany Dequeues n tuples of one or more tensors from the given queue.
tensorflow::ops::QueueDequeueUpTo Dequeues n tuples of one or more tensors from the given queue.
tensorflow::ops::QueueEnqueue Enqueues a tuple of one or more tensors in the given queue.
tensorflow::ops::QueueEnqueueMany Enqueues zero or more tuples of one or more tensors in the given queue.
tensorflow::ops::QueueIsClosed Returns true if queue is closed.
tensorflow::ops::QueueIsClosedV2 Returns true if queue is closed.
tensorflow::ops::QueueSize Computes the number of elements in the given queue.
tensorflow::ops::RandomShuffleQueue A queue that randomizes the order of elements.
tensorflow::ops::RecordInput Emits randomized records.
tensorflow::ops::SparseAccumulatorApplyGradient Applies a sparse gradient to a given accumulator.
tensorflow::ops::SparseAccumulatorTakeGradient Extracts the average sparse gradient in a SparseConditionalAccumulator.
tensorflow::ops::SparseConditionalAccumulator A conditional accumulator for aggregating sparse gradients.
tensorflow::ops::Stage Stage values similar to a lightweight Enqueue.
tensorflow::ops::StageClear Op removes all elements in the underlying container.
tensorflow::ops::StagePeek Op peeks at the values at the specified index.
tensorflow::ops::StageSize Op returns the number of elements in the underlying container.
tensorflow::ops::TensorArray An array of Tensors of given size.
tensorflow::ops::TensorArrayClose Delete the TensorArray from its resource container.
tensorflow::ops::TensorArrayConcat Concat the elements from the TensorArray into value value.
tensorflow::ops::TensorArrayGather Gather specific elements from the TensorArray into output value.
tensorflow::ops::TensorArrayGrad Creates a TensorArray for storing the gradients of values in the given handle.
tensorflow::ops::TensorArrayGradWithShape Creates a TensorArray for storing multiple gradients of values in the given handle.
tensorflow::ops::TensorArrayRead Read an element from the TensorArray into output value.
tensorflow::ops::TensorArrayScatter Scatter the data from the input value into specific TensorArray elements.
tensorflow::ops::TensorArraySize Get the current size of the TensorArray.
tensorflow::ops::TensorArraySplit Split the data from the input value into TensorArray elements.
tensorflow::ops::TensorArrayWrite Push an element onto the tensor_array.
tensorflow::ops::Unstage Op is similar to a lightweight Dequeue.

image_ops

Members

tensorflow::ops::AdjustContrast Adjust the contrast of one or more images.
tensorflow::ops::AdjustHue Adjust the hue of one or more images.
tensorflow::ops::AdjustSaturation Adjust the saturation of one or more images.
tensorflow::ops::CombinedNonMaxSuppression Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::CropAndResize Extracts crops from the input image tensor and resizes them.
tensorflow::ops::CropAndResizeGradBoxes Computes the gradient of the crop_and_resize op wrt the input boxes tensor.
tensorflow::ops::CropAndResizeGradImage Computes the gradient of the crop_and_resize op wrt the input image tensor.
tensorflow::ops::DecodeAndCropJpeg Decode and Crop a JPEG-encoded image to a uint8 tensor.
tensorflow::ops::DecodeBmp Decode the first frame of a BMP-encoded image to a uint8 tensor.
tensorflow::ops::DecodeGif Decode the frame(s) of a GIF-encoded image to a uint8 tensor.
tensorflow::ops::DecodeImage Function for decode_bmp, decode_gif, decode_jpeg, and decode_png.
tensorflow::ops::DecodeJpeg Decode a JPEG-encoded image to a uint8 tensor.
tensorflow::ops::DecodePng Decode a PNG-encoded image to a uint8 or uint16 tensor.
tensorflow::ops::DrawBoundingBoxes Draw bounding boxes on a batch of images.
tensorflow::ops::DrawBoundingBoxesV2 Draw bounding boxes on a batch of images.
tensorflow::ops::EncodeJpeg JPEG-encode an image.
tensorflow::ops::EncodeJpegVariableQuality JPEG encode input image with provided compression quality.
tensorflow::ops::EncodePng PNG-encode an image.
tensorflow::ops::ExtractGlimpse Extracts a glimpse from the input tensor.
tensorflow::ops::ExtractJpegShape Extract the shape information of a JPEG-encoded image.
tensorflow::ops::HSVToRGB Convert one or more images from HSV to RGB.
tensorflow::ops::NonMaxSuppression Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV2 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV3 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV4 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionV5 Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::NonMaxSuppressionWithOverlaps Greedily selects a subset of bounding boxes in descending order of score,.
tensorflow::ops::QuantizedResizeBilinear Resize quantized images to size using quantized bilinear interpolation.
tensorflow::ops::RGBToHSV Converts one or more images from RGB to HSV.
tensorflow::ops::ResizeArea Resize images to size using area interpolation.
tensorflow::ops::ResizeBicubic Resize images to size using bicubic interpolation.
tensorflow::ops::ResizeBilinear Resize images to size using bilinear interpolation.
tensorflow::ops::ResizeNearestNeighbor Resize images to size using nearest neighbor interpolation.
tensorflow::ops::SampleDistortedBoundingBox Generate a single randomly distorted bounding box for an image.
tensorflow::ops::SampleDistortedBoundingBoxV2 Generate a single randomly distorted bounding box for an image.
tensorflow::ops::ScaleAndTranslate TODO: add doc.
tensorflow::ops::StatelessSampleDistortedBoundingBox Generate a randomly distorted bounding box for an image deterministically.

io_ops

Members

tensorflow::ops::FixedLengthRecordReader A Reader that outputs fixed-length records from a file.
tensorflow::ops::IdentityReader A Reader that outputs the queued work as both the key and value.
tensorflow::ops::LMDBReader A Reader that outputs the records from a LMDB file.
tensorflow::ops::MatchingFiles Returns the set of files matching one or more glob patterns.
tensorflow::ops::MergeV2Checkpoints V2 format specific: merges the metadata files of sharded checkpoints.
tensorflow::ops::ReadFile Reads and outputs the entire contents of the input filename.
tensorflow::ops::ReaderNumRecordsProduced Returns the number of records this Reader has produced.
tensorflow::ops::ReaderNumWorkUnitsCompleted Returns the number of work units this Reader has finished processing.
tensorflow::ops::ReaderRead Returns the next record (key, value pair) produced by a Reader.
tensorflow::ops::ReaderReadUpTo Returns up to num_records (key, value) pairs produced by a Reader.
tensorflow::ops::ReaderReset Restore a Reader to its initial clean state.
tensorflow::ops::ReaderRestoreState Restore a reader to a previously saved state.
tensorflow::ops::ReaderSerializeState Produce a string tensor that encodes the state of a Reader.
tensorflow::ops::Restore Restores a tensor from checkpoint files.
tensorflow::ops::RestoreSlice Restores a tensor from checkpoint files.
tensorflow::ops::RestoreV2 Restores tensors from a V2 checkpoint.
tensorflow::ops::Save Saves the input tensors to disk.
tensorflow::ops::SaveSlices Saves input tensors slices to disk.
tensorflow::ops::SaveV2 Saves tensors in V2 checkpoint format.
tensorflow::ops::ShardedFilename Generate a sharded filename.
tensorflow::ops::ShardedFilespec Generate a glob pattern matching all sharded file names.
tensorflow::ops::TFRecordReader A Reader that outputs the records from a TensorFlow Records file.
tensorflow::ops::TextLineReader A Reader that outputs the lines of a file delimited by '\n'.
tensorflow::ops::WholeFileReader A Reader that outputs the entire contents of a file as a value.
tensorflow::ops::WriteFile Writes contents to the file at input filename.

logging_ops

Members

tensorflow::ops::Assert Asserts that the given condition is true.
tensorflow::ops::HistogramSummary Outputs a Summary protocol buffer with a histogram.
tensorflow::ops::MergeSummary Merges summaries.
tensorflow::ops::Print Prints a list of tensors.
tensorflow::ops::PrintV2 Prints a string scalar.
tensorflow::ops::ScalarSummary Outputs a Summary protocol buffer with scalar values.
tensorflow::ops::TensorSummary Outputs a Summary protocol buffer with a tensor.
tensorflow::ops::TensorSummaryV2 Outputs a Summary protocol buffer with a tensor and per-plugin data.
tensorflow::ops::Timestamp Provides the time since epoch in seconds.

math_ops

Members

tensorflow::ops::Abs Computes the absolute value of a tensor.
tensorflow::ops::AccumulateNV2 Returns the element-wise sum of a list of tensors.
tensorflow::ops::Acos Computes acos of x element-wise.
tensorflow::ops::Acosh Computes inverse hyperbolic cosine of x element-wise.
tensorflow::ops::Add Returns x + y element-wise.
tensorflow::ops::AddN Add all input tensors element wise.
tensorflow::ops::AddV2 Returns x + y element-wise.
tensorflow::ops::All Computes the "logical and" of elements across dimensions of a tensor.
tensorflow::ops::Angle Returns the argument of a complex number.
tensorflow::ops::Any Computes the "logical or" of elements across dimensions of a tensor.
tensorflow::ops::ApproximateEqual Returns the truth value of abs(x-y) < tolerance element-wise.
tensorflow::ops::ArgMax Returns the index with the largest value across dimensions of a tensor.
tensorflow::ops::ArgMin Returns the index with the smallest value across dimensions of a tensor.
tensorflow::ops::Asin Computes the trignometric inverse sine of x element-wise.
tensorflow::ops::Asinh Computes inverse hyperbolic sine of x element-wise.
tensorflow::ops::Atan Computes the trignometric inverse tangent of x element-wise.
tensorflow::ops::Atan2 Computes arctangent of y/x element-wise, respecting signs of the arguments.
tensorflow::ops::Atanh Computes inverse hyperbolic tangent of x element-wise.
tensorflow::ops::BatchMatMul Multiplies slices of two tensors in batches.
tensorflow::ops::BatchMatMulV2 Multiplies slices of two tensors in batches.
tensorflow::ops::BatchMatMulV3 Multiplies slices of two tensors in batches.
tensorflow::ops::Betainc Compute the regularized incomplete beta integral \(I_x(a, b)\).
tensorflow::ops::Bincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::Bucketize Bucketizes 'input' based on 'boundaries'.
tensorflow::ops::Cast Cast x of type SrcT to y of DstT.
tensorflow::ops::Ceil Returns element-wise smallest integer not less than x.
tensorflow::ops::ClipByValue Clips tensor values to a specified min and max.
tensorflow::ops::Complex Converts two real numbers to a complex number.
tensorflow::ops::ComplexAbs Computes the complex absolute value of a tensor.
tensorflow::ops::Conj Returns the complex conjugate of a complex number.
tensorflow::ops::Cos Computes cos of x element-wise.
tensorflow::ops::Cosh Computes hyperbolic cosine of x element-wise.
tensorflow::ops::Cross Compute the pairwise cross product.
tensorflow::ops::Cumprod Compute the cumulative product of the tensor x along axis.
tensorflow::ops::Cumsum Compute the cumulative sum of the tensor x along axis.
tensorflow::ops::DenseBincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::Digamma Computes Psi, the derivative of Lgamma (the log of the absolute value of.
tensorflow::ops::Div Returns x / y element-wise.
tensorflow::ops::DivNoNan Returns 0 if the denominator is zero.
tensorflow::ops::Equal Returns the truth value of (x == y) element-wise.
tensorflow::ops::Erf Computes the Gauss error function of x element-wise.
tensorflow::ops::Erfc Computes the complementary error function of x element-wise.
tensorflow::ops::Erfinv TODO: add doc.
tensorflow::ops::EuclideanNorm Computes the euclidean norm of elements across dimensions of a tensor.
tensorflow::ops::Exp Computes exponential of x element-wise.
tensorflow::ops::Expm1 Computes exp(x) - 1 element-wise.
tensorflow::ops::Floor Returns element-wise largest integer not greater than x.
tensorflow::ops::FloorDiv Returns x // y element-wise.
tensorflow::ops::FloorMod Returns element-wise remainder of division.
tensorflow::ops::Greater Returns the truth value of (x > y) element-wise.
tensorflow::ops::GreaterEqual Returns the truth value of (x >= y) element-wise.
tensorflow::ops::HistogramFixedWidth Return histogram of values.
tensorflow::ops::Igamma Compute the lower regularized incomplete Gamma function P(a, x).
tensorflow::ops::Igammac Compute the upper regularized incomplete Gamma function Q(a, x).
tensorflow::ops::Imag Returns the imaginary part of a complex number.
tensorflow::ops::Inv Computes the reciprocal of x element-wise.
tensorflow::ops::IsFinite Returns which elements of x are finite.
tensorflow::ops::IsInf Returns which elements of x are Inf.
tensorflow::ops::IsNan Returns which elements of x are NaN.
tensorflow::ops::Less Returns the truth value of (x < y) element-wise.
tensorflow::ops::LessEqual Returns the truth value of (x <= y) element-wise.
tensorflow::ops::Lgamma Computes the log of the absolute value of Gamma(x) element-wise.
tensorflow::ops::Log Computes natural logarithm of x element-wise.
tensorflow::ops::Log1p Computes natural logarithm of (1 + x) element-wise.
tensorflow::ops::LogicalAnd Returns the truth value of x AND y element-wise.
tensorflow::ops::LogicalNot Returns the truth value of NOT x element-wise.
tensorflow::ops::LogicalOr Returns the truth value of x OR y element-wise.
tensorflow::ops::MatMul Multiply the matrix "a" by the matrix "b".
tensorflow::ops::Max Computes the maximum of elements across dimensions of a tensor.
tensorflow::ops::Maximum Returns the max of x and y (i.e.
tensorflow::ops::Mean Computes the mean of elements across dimensions of a tensor.
tensorflow::ops::Min Computes the minimum of elements across dimensions of a tensor.
tensorflow::ops::Minimum Returns the min of x and y (i.e.
tensorflow::ops::Mod Returns element-wise remainder of division.
tensorflow::ops::MulNoNan Returns x * y element-wise.
tensorflow::ops::Multiply Returns x * y element-wise.
tensorflow::ops::Ndtri TODO: add doc.
tensorflow::ops::Negate Computes numerical negative value element-wise.
tensorflow::ops::NextAfter Returns the next representable value of x1 in the direction of x2, element-wise.
tensorflow::ops::NotEqual Returns the truth value of (x != y) element-wise.
tensorflow::ops::Polygamma Compute the polygamma function \(\psi^{(n)}(x)\).
tensorflow::ops::Pow Computes the power of one value to another.
tensorflow::ops::Prod Computes the product of elements across dimensions of a tensor.
tensorflow::ops::QuantizeDownAndShrinkRange Convert the quantized 'input' tensor into a lower-precision 'output', using the.
tensorflow::ops::QuantizedAdd Returns x + y element-wise, working on quantized buffers.
tensorflow::ops::QuantizedMatMul Perform a quantized matrix multiplication of a by the matrix b.
tensorflow::ops::QuantizedMul Returns x * y element-wise, working on quantized buffers.
tensorflow::ops::RaggedBincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::Range Creates a sequence of numbers.
tensorflow::ops::Real Returns the real part of a complex number.
tensorflow::ops::RealDiv Returns x / y element-wise for real types.
tensorflow::ops::Reciprocal Computes the reciprocal of x element-wise.
tensorflow::ops::RequantizationRange Computes a range that covers the actual values present in a quantized tensor.
tensorflow::ops::Requantize Converts the quantized input tensor into a lower-precision output.
tensorflow::ops::Rint Returns element-wise integer closest to x.
tensorflow::ops::Round Rounds the values of a tensor to the nearest integer, element-wise.
tensorflow::ops::Rsqrt Computes reciprocal of square root of x element-wise.
tensorflow::ops::SegmentMax Computes the maximum along segments of a tensor.
tensorflow::ops::SegmentMaxV2 Computes the maximum along segments of a tensor.
tensorflow::ops::SegmentMean Computes the mean along segments of a tensor.
tensorflow::ops::SegmentMin Computes the minimum along segments of a tensor.
tensorflow::ops::SegmentMinV2 Computes the minimum along segments of a tensor.
tensorflow::ops::SegmentProd Computes the product along segments of a tensor.
tensorflow::ops::SegmentProdV2 Computes the product along segments of a tensor.
tensorflow::ops::SegmentSum Computes the sum along segments of a tensor.
tensorflow::ops::SegmentSumV2 Computes the sum along segments of a tensor.
tensorflow::ops::SelectV2 TODO: add doc.
tensorflow::ops::Sigmoid Computes sigmoid of x element-wise.
tensorflow::ops::Sign Returns an element-wise indication of the sign of a number.
tensorflow::ops::Sin Computes sine of x element-wise.
tensorflow::ops::Sinh Computes hyperbolic sine of x element-wise.
tensorflow::ops::SparseBincount Counts the number of occurrences of each value in an integer array.
tensorflow::ops::SparseMatMul Multiply matrix "a" by matrix "b".
tensorflow::ops::SparseSegmentMean Computes the mean along sparse segments of a tensor.
tensorflow::ops::SparseSegmentMeanGrad Computes gradients for SparseSegmentMean.
tensorflow::ops::SparseSegmentMeanGradV2 Computes gradients for SparseSegmentMean.
tensorflow::ops::SparseSegmentMeanWithNumSegments Computes the mean along sparse segments of a tensor.
tensorflow::ops::SparseSegmentSqrtN Computes the sum along sparse segments of a tensor divided by the sqrt of N.
tensorflow::ops::SparseSegmentSqrtNGrad Computes gradients for SparseSegmentSqrtN.
tensorflow::ops::SparseSegmentSqrtNGradV2 Computes gradients for SparseSegmentSqrtN.
tensorflow::ops::SparseSegmentSqrtNWithNumSegments Computes the sum along sparse segments of a tensor divided by the sqrt of N.
tensorflow::ops::SparseSegmentSum Computes the sum along sparse segments of a tensor.
tensorflow::ops::SparseSegmentSumGrad Computes gradients for SparseSegmentSum.
tensorflow::ops::SparseSegmentSumGradV2 Computes gradients for SparseSegmentSum.
tensorflow::ops::SparseSegmentSumWithNumSegments Computes the sum along sparse segments of a tensor.
tensorflow::ops::Sqrt Computes square root of x element-wise.
tensorflow::ops::Square Computes square of x element-wise.
tensorflow::ops::SquaredDifference Returns conj(x - y)(x - y) element-wise.
tensorflow::ops::Subtract Returns x - y element-wise.
tensorflow::ops::Sum Computes the sum of elements across dimensions of a tensor.
tensorflow::ops::Tan Computes tan of x element-wise.
tensorflow::ops::Tanh Computes hyperbolic tangent of x element-wise.
tensorflow::ops::TruncateDiv Returns x / y element-wise, rounded towards zero.
tensorflow::ops::TruncateMod Returns element-wise remainder of division.
tensorflow::ops::UnsortedSegmentMax Computes the maximum along segments of a tensor.
tensorflow::ops::UnsortedSegmentMin Computes the minimum along segments of a tensor.
tensorflow::ops::UnsortedSegmentProd Computes the product along segments of a tensor.
tensorflow::ops::UnsortedSegmentSum Computes the sum along segments of a tensor.
tensorflow::ops::Where3 Selects elements from x or y, depending on condition.
tensorflow::ops::Xdivy Returns 0 if x == 0, and x / y otherwise, elementwise.
tensorflow::ops::Xlog1py Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise.
tensorflow::ops::Xlogy Returns 0 if x == 0, and x * log(y) otherwise, elementwise.
tensorflow::ops::Zeta Compute the Hurwitz zeta function \(\zeta(x, q)\).

nn_ops

Members

tensorflow::ops::ApproxTopK Returns min/max k values and their indices of the input operand in an approximate manner.
tensorflow::ops::AvgPool Performs average pooling on the input.
tensorflow::ops::AvgPool3D Performs 3D average pooling on the input.
tensorflow::ops::AvgPool3DGrad Computes gradients of average pooling function.
tensorflow::ops::BiasAdd Adds bias to value.
tensorflow::ops::BiasAddGrad The backward operation for "BiasAdd" on the "bias" tensor.
tensorflow::ops::Conv Computes a N-D convolution given (N+1+batch_dims)-D input and (N+2)-D filter tensors.
tensorflow::ops::Conv2D Computes a 2-D convolution given 4-D input and filter tensors.
tensorflow::ops::Conv2DBackpropFilter Computes the gradients of convolution with respect to the filter.
tensorflow::ops::Conv2DBackpropFilterV2 Computes the gradients of convolution with respect to the filter.
tensorflow::ops::Conv2DBackpropInput Computes the gradients of convolution with respect to the input.
tensorflow::ops::Conv2DBackpropInputV2 Computes the gradients of convolution with respect to the input.
tensorflow::ops::Conv3D Computes a 3-D convolution given 5-D input and filter tensors.
tensorflow::ops::Conv3DBackpropFilterV2 Computes the gradients of 3-D convolution with respect to the filter.
tensorflow::ops::Conv3DBackpropInputV2 Computes the gradients of 3-D convolution with respect to the input.
tensorflow::ops::DataFormatDimMap Returns the dimension index in the destination data format given the one in.
tensorflow::ops::DataFormatVecPermute Permute input tensor from src_format to dst_format.
tensorflow::ops::DepthwiseConv2dNative Computes a 2-D depthwise convolution given 4-D input and filter tensors.
tensorflow::ops::DepthwiseConv2dNativeBackpropFilter Computes the gradients of depthwise convolution with respect to the filter.
tensorflow::ops::DepthwiseConv2dNativeBackpropInput Computes the gradients of depthwise convolution with respect to the input.
tensorflow::ops::Dilation2D Computes the grayscale dilation of 4-D input and 3-D filter tensors.
tensorflow::ops::Dilation2DBackpropFilter Computes the gradient of morphological 2-D dilation with respect to the filter.
tensorflow::ops::Dilation2DBackpropInput Computes the gradient of morphological 2-D dilation with respect to the input.
tensorflow::ops::Elu Computes the exponential linear function.
tensorflow::ops::FractionalAvgPool Performs fractional average pooling on the input.
tensorflow::ops::FractionalMaxPool Performs fractional max pooling on the input.
tensorflow::ops::FusedBatchNorm Batch normalization.
tensorflow::ops::FusedBatchNormGrad Gradient for batch normalization.
tensorflow::ops::FusedBatchNormGradV2 Gradient for batch normalization.
tensorflow::ops::FusedBatchNormGradV3 Gradient for batch normalization.
tensorflow::ops::FusedBatchNormV2 Batch normalization.
tensorflow::ops::FusedBatchNormV3 Batch normalization.
tensorflow::ops::FusedPadConv2D Performs a padding as a preprocess during a convolution.
tensorflow::ops::FusedResizeAndPadConv2D Performs a resize and padding as a preprocess during a convolution.
tensorflow::ops::InTopK Says whether the targets are in the top K predictions.
tensorflow::ops::InTopKV2 Says whether the targets are in the top K predictions.
tensorflow::ops::L2Loss L2 Loss.
tensorflow::ops::LRN Local Response Normalization.
tensorflow::ops::LogSoftmax Computes log softmax activations.
tensorflow::ops::MaxPool Performs max pooling on the input.
tensorflow::ops::MaxPool3D Performs 3D max pooling on the input.
tensorflow::ops::MaxPool3DGrad Computes gradients of 3D max pooling function.
tensorflow::ops::MaxPool3DGradGrad Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradGrad Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradGradV2 Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradGradWithArgmax Computes second-order gradients of the maxpooling function.
tensorflow::ops::MaxPoolGradV2 Computes gradients of the maxpooling function.
tensorflow::ops::MaxPoolV2 Performs max pooling on the input.
tensorflow::ops::MaxPoolWithArgmax Performs max pooling on the input and outputs both max values and indices.
tensorflow::ops::NthElement Finds values of the n-th order statistic for the last dimension.
tensorflow::ops::QuantizedAvgPool Produces the average pool of the input tensor for quantized types.
tensorflow::ops::QuantizedBatchNormWithGlobalNormalization Quantized Batch normalization.
tensorflow::ops::QuantizedBiasAdd Adds Tensor 'bias' to Tensor 'input' for Quantized types.
tensorflow::ops::QuantizedConv2D Computes a 2D convolution given quantized 4D input and filter tensors.
tensorflow::ops::QuantizedMaxPool Produces the max pool of the input tensor for quantized types.
tensorflow::ops::QuantizedRelu Computes Quantized Rectified Linear: max(features, 0)
tensorflow::ops::QuantizedRelu6 Computes Quantized Rectified Linear 6: min(max(features, 0), 6)
tensorflow::ops::QuantizedReluX Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
tensorflow::ops::Relu Computes rectified linear: max(features, 0).
tensorflow::ops::Relu6 Computes rectified linear 6: min(max(features, 0), 6).
tensorflow::ops::Selu Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
tensorflow::ops::Softmax Computes softmax activations.
tensorflow::ops::SoftmaxCrossEntropyWithLogits Computes softmax cross entropy cost and gradients to backpropagate.
tensorflow::ops::Softplus TODO: add doc.
tensorflow::ops::Softsign Computes softsign: features / (abs(features) + 1).
tensorflow::ops::SparseSoftmaxCrossEntropyWithLogits Computes softmax cross entropy cost and gradients to backpropagate.
tensorflow::ops::TopK Finds values and indices of the k largest elements for the last dimension.

no_op

Members

tensorflow::ops::NoOp Does nothing.

parsing_ops

Members

tensorflow::ops::DecodeCSV Convert CSV records to tensors.
tensorflow::ops::DecodeCompressed Decompress strings.
tensorflow::ops::DecodeJSONExample Convert JSON-encoded Example records to binary protocol buffer strings.
tensorflow::ops::DecodePaddedRaw Reinterpret the bytes of a string as a vector of numbers.
tensorflow::ops::DecodeRaw Reinterpret the bytes of a string as a vector of numbers.
tensorflow::ops::ParseExample Transforms a vector of brain.Example protos (as strings) into typed tensors.
tensorflow::ops::ParseExampleV2 Transforms a vector of tf.Example protos (as strings) into typed tensors.
tensorflow::ops::ParseSequenceExample Transforms a vector of brain.SequenceExample protos (as strings) into typed tensors.
tensorflow::ops::ParseSequenceExampleV2 Transforms a vector of tf.io.SequenceExample protos (as strings) into typed tensors.
tensorflow::ops::ParseSingleExample Transforms a tf.Example proto (as a string) into typed tensors.
tensorflow::ops::ParseSingleSequenceExample Transforms a scalar brain.SequenceExample proto (as strings) into typed tensors.
tensorflow::ops::ParseTensor Transforms a serialized tensorflow.TensorProto proto into a Tensor.
tensorflow::ops::SerializeTensor Transforms a Tensor into a serialized TensorProto proto.
tensorflow::ops::StringToNumber Converts each string in the input Tensor to the specified numeric type.

random_ops

Members

tensorflow::ops::Multinomial Draws samples from a multinomial distribution.
tensorflow::ops::ParameterizedTruncatedNormal Outputs random values from a normal distribution.
tensorflow::ops::RandomGamma Outputs random values from the Gamma distribution(s) described by alpha.
tensorflow::ops::RandomNormal Outputs random values from a normal distribution.
tensorflow::ops::RandomPoissonV2 Outputs random values from the Poisson distribution(s) described by rate.
tensorflow::ops::RandomShuffle Randomly shuffles a tensor along its first dimension.
tensorflow::ops::RandomUniform Outputs random values from a uniform distribution.
tensorflow::ops::RandomUniformInt Outputs random integers from a uniform distribution.
tensorflow::ops::TruncatedNormal Outputs random values from a truncated normal distribution.

sparse_ops

Members

tensorflow::ops::AddManySparseToTensorsMap Add an N-minibatch SparseTensor to a SparseTensorsMap, return N handles.
tensorflow::ops::AddSparseToTensorsMap Add a SparseTensor to a SparseTensorsMap return its handle.
tensorflow::ops::DeserializeManySparse Deserialize and concatenate SparseTensors from a serialized minibatch.
tensorflow::ops::DeserializeSparse Deserialize SparseTensor objects.
tensorflow::ops::SerializeManySparse Serialize an N-minibatch SparseTensor into an [N, 3]Tensor object.
tensorflow::ops::SerializeSparse Serialize a SparseTensor into a [3]Tensor object.
tensorflow::ops::SparseAdd Adds two SparseTensor objects to produce another SparseTensor.
tensorflow::ops::SparseAddGrad The gradient operator for the SparseAdd op.
tensorflow::ops::SparseConcat Concatenates a list of SparseTensor along the specified dimension.
tensorflow::ops::SparseCross Generates sparse cross from a list of sparse and dense tensors.
tensorflow::ops::SparseCrossHashed Generates sparse cross from a list of sparse and dense tensors.
tensorflow::ops::SparseCrossV2 Generates sparse cross from a list of sparse and dense tensors.
tensorflow::ops::SparseDenseCwiseAdd Adds up a SparseTensor and a dense Tensor, using these special rules:
tensorflow::ops::SparseDenseCwiseDiv Component-wise divides a SparseTensor by a dense Tensor.
tensorflow::ops::SparseDenseCwiseMul Component-wise multiplies a SparseTensor by a dense Tensor.
tensorflow::ops::SparseFillEmptyRows Fills empty rows in the input 2-D SparseTensor with a default value.
tensorflow::ops::SparseFillEmptyRowsGrad The gradient of SparseFillEmptyRows.
tensorflow::ops::SparseReduceMax Computes the max of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReduceMaxSparse Computes the max of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReduceSum Computes the sum of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReduceSumSparse Computes the sum of elements across dimensions of a SparseTensor.
tensorflow::ops::SparseReorder Reorders a SparseTensor into the canonical, row-major ordering.
tensorflow::ops::SparseReshape Reshapes a SparseTensor to represent values in a new dense shape.
tensorflow::ops::SparseSlice Slice a SparseTensor based on the start and size.
tensorflow::ops::SparseSliceGrad The gradient operator for the SparseSlice op.
tensorflow::ops::SparseSoftmax Applies softmax to a batched N-D SparseTensor.
tensorflow::ops::SparseSparseMaximum Returns the element-wise max of two SparseTensors.
tensorflow::ops::SparseSparseMinimum Returns the element-wise min of two SparseTensors.
tensorflow::ops::SparseSplit Split a SparseTensor into num_split tensors along one dimension.
tensorflow::ops::SparseTensorDenseAdd Adds up a SparseTensor and a dense Tensor , producing a dense Tensor .
tensorflow::ops::SparseTensorDenseMatMul Multiply SparseTensor (of rank 2) "A" by dense matrix "B".
tensorflow::ops::TakeManySparseFromTensorsMap Converts a sparse representation into a dense tensor.

state_ops

Members

tensorflow::ops::Assign Update 'ref' by assigning 'value' to it.
tensorflow::ops::AssignAdd Update 'ref' by adding 'value' to it.
tensorflow::ops::AssignSub Update 'ref' by subtracting 'value' from it.
tensorflow::ops::CountUpTo Increments 'ref' until it reaches 'limit'.
tensorflow::ops::DestroyTemporaryVariable Destroys the temporary variable and returns its final value.
tensorflow::ops::IsVariableInitialized Checks whether a tensor has been initialized.
tensorflow::ops::ResourceCountUpTo Increments variable pointed to by 'resource' until it reaches 'limit'.
tensorflow::ops::ResourceScatterNdAdd Applies sparse addition to individual values or slices in a Variable.
tensorflow::ops::ResourceScatterNdMax TODO: add doc.
tensorflow::ops::ResourceScatterNdMin TODO: add doc.
tensorflow::ops::ResourceScatterNdSub Applies sparse subtraction to individual values or slices in a Variable.
tensorflow::ops::ResourceScatterNdUpdate Applies sparse updates to individual values or slices within a given.
tensorflow::ops::ScatterAdd Adds sparse updates to a variable reference.
tensorflow::ops::ScatterDiv Divides a variable reference by sparse updates.
tensorflow::ops::ScatterMax Reduces sparse updates into a variable reference using the max operation.
tensorflow::ops::ScatterMin Reduces sparse updates into a variable reference using the min operation.
tensorflow::ops::ScatterMul Multiplies sparse updates into a variable reference.
tensorflow::ops::ScatterNdAdd Applies sparse addition to individual values or slices in a Variable.
tensorflow::ops::ScatterNdSub Applies sparse subtraction to individual values or slices in a Variable.
tensorflow::ops::ScatterNdUpdate Applies sparse updates to individual values or slices within a given.
tensorflow::ops::ScatterSub Subtracts sparse updates to a variable reference.
tensorflow::ops::ScatterUpdate Applies sparse updates to a variable reference.
tensorflow::ops::TemporaryVariable Returns a tensor that may be mutated, but only persists within a single step.
tensorflow::ops::Variable Holds state in the form of a tensor that persists across steps.

string_ops

Members

tensorflow::ops::AsString Converts each entry in the given tensor to strings.
tensorflow::ops::DecodeBase64 Decode web-safe base64-encoded strings.
tensorflow::ops::EncodeBase64 Encode strings into web-safe base64 format.
tensorflow::ops::ReduceJoin Joins a string Tensor across the given dimensions.
tensorflow::ops::RegexFullMatch Check if the input matches the regex pattern.
tensorflow::ops::RegexReplace Replaces matches of the pattern regular expression in input with the replacement string provided in rewrite.
tensorflow::ops::StringFormat Formats a string template using a list of tensors.
tensorflow::ops::StringJoin Joins the strings in the given list of string tensors into one tensor;.
tensorflow::ops::StringLength String lengths of input.
tensorflow::ops::StringLower Converts all uppercase characters into their respective lowercase replacements.
tensorflow::ops::StringNGrams Creates ngrams from ragged string data.
tensorflow::ops::StringSplit Split elements of input based on delimiter into a SparseTensor.
tensorflow::ops::StringSplitV2 Split elements of source based on sep into a SparseTensor.
tensorflow::ops::StringStrip Strip leading and trailing whitespaces from the Tensor.
tensorflow::ops::StringToHashBucket Converts each string in the input Tensor to its hash mod by a number of buckets.
tensorflow::ops::StringToHashBucketFast Converts each string in the input Tensor to its hash mod by a number of buckets.
tensorflow::ops::StringToHashBucketStrong Converts each string in the input Tensor to its hash mod by a number of buckets.
tensorflow::ops::StringUpper Converts all lowercase characters into their respective uppercase replacements.
tensorflow::ops::Substr Return substrings from Tensor of strings.
tensorflow::ops::UnicodeScript Determine the script codes of a given tensor of Unicode integer code points.
tensorflow::ops::UnicodeTranscode Transcode the input text from a source encoding to a destination encoding.

training_ops

Members

tensorflow::ops::ApplyAdadelta Update '*var' according to the adadelta scheme.
tensorflow::ops::ApplyAdagrad Update '*var' according to the adagrad scheme.
tensorflow::ops::ApplyAdagradDA Update '*var' according to the proximal adagrad scheme.
tensorflow::ops::ApplyAdam Update '*var' according to the Adam algorithm.
tensorflow::ops::ApplyAddSign Update '*var' according to the AddSign update.
tensorflow::ops::ApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::ApplyFtrl Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ApplyFtrlV2 Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ApplyGradientDescent Update '*var' by subtracting 'alpha' * 'delta' from it.
tensorflow::ops::ApplyMomentum Update '*var' according to the momentum scheme.
tensorflow::ops::ApplyPowerSign Update '*var' according to the AddSign update.
tensorflow::ops::ApplyProximalAdagrad Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
tensorflow::ops::ApplyProximalGradientDescent Update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::ApplyRMSProp Update '*var' according to the RMSProp algorithm.
tensorflow::ops::ResourceApplyAdadelta Update '*var' according to the adadelta scheme.
tensorflow::ops::ResourceApplyAdagrad Update '*var' according to the adagrad scheme.
tensorflow::ops::ResourceApplyAdagradDA Update '*var' according to the proximal adagrad scheme.
tensorflow::ops::ResourceApplyAdam Update '*var' according to the Adam algorithm.
tensorflow::ops::ResourceApplyAdamWithAmsgrad Update '*var' according to the Adam algorithm.
tensorflow::ops::ResourceApplyAddSign Update '*var' according to the AddSign update.
tensorflow::ops::ResourceApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::ResourceApplyFtrl Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceApplyFtrlV2 Update '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceApplyGradientDescent Update '*var' by subtracting 'alpha' * 'delta' from it.
tensorflow::ops::ResourceApplyKerasMomentum Update '*var' according to the momentum scheme.
tensorflow::ops::ResourceApplyMomentum Update '*var' according to the momentum scheme.
tensorflow::ops::ResourceApplyPowerSign Update '*var' according to the AddSign update.
tensorflow::ops::ResourceApplyProximalAdagrad Update '*var' and '*accum' according to FOBOS with Adagrad learning rate.
tensorflow::ops::ResourceApplyProximalGradientDescent Update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::ResourceApplyRMSProp Update '*var' according to the RMSProp algorithm.
tensorflow::ops::ResourceSparseApplyAdadelta var: Should be from a Variable().
tensorflow::ops::ResourceSparseApplyAdagrad Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
tensorflow::ops::ResourceSparseApplyAdagradDA Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
tensorflow::ops::ResourceSparseApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::ResourceSparseApplyFtrl Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceSparseApplyFtrlV2 Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::ResourceSparseApplyKerasMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
tensorflow::ops::ResourceSparseApplyMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
tensorflow::ops::ResourceSparseApplyProximalAdagrad Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
tensorflow::ops::ResourceSparseApplyProximalGradientDescent Sparse update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::ResourceSparseApplyRMSProp Update '*var' according to the RMSProp algorithm.
tensorflow::ops::SparseApplyAdadelta var: Should be from a Variable().
tensorflow::ops::SparseApplyAdagrad Update relevant entries in '*var' and '*accum' according to the adagrad scheme.
tensorflow::ops::SparseApplyAdagradDA Update entries in '*var' and '*accum' according to the proximal adagrad scheme.
tensorflow::ops::SparseApplyCenteredRMSProp Update '*var' according to the centered RMSProp algorithm.
tensorflow::ops::SparseApplyFtrl Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::SparseApplyFtrlV2 Update relevant entries in '*var' according to the Ftrl-proximal scheme.
tensorflow::ops::SparseApplyMomentum Update relevant entries in '*var' and '*accum' according to the momentum scheme.
tensorflow::ops::SparseApplyProximalAdagrad Sparse update entries in '*var' and '*accum' according to FOBOS algorithm.
tensorflow::ops::SparseApplyProximalGradientDescent Sparse update '*var' as FOBOS algorithm with fixed learning rate.
tensorflow::ops::SparseApplyRMSProp Update '*var' according to the RMSProp algorithm.

user_ops

Members

tensorflow::ops::Fact Output a fact about factorials.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.

Last updated 2023年10月06日 UTC.