コンテンツにスキップ
Wikipedia

PSL(2, 7)

出典: フリー百科事典『ウィキペディア(Wikipedia)』

2024年9月11日 (水) 22:24; Bcxfubot (会話 | 投稿記録) による版 (外部リンクの修正 http:// -> https:// (math.ucr.edu) (Botによる編集))(日時は個人設定で未設定ならUTC)

Bcxfubot (会話 | 投稿記録)による2024年9月11日 (水) 22:24時点の版 (外部リンクの修正 http:// -> https:// (math.ucr.edu) (Botによる編集))
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。(2018年7月)

射影特殊線型群 PSL2(7) (別表記: PSL(2, 7), PSL2(F7), PSL(2, F7)など)もしくはそれと同型PSL3(2) (別表記: PSL(3, 2), PSL3(F2), PSL(3, F2)など)は、代数学幾何学数論といった分野で重要な役割を持つ有限 単純群である。PSL2(7)はクラインの平面4次曲線 (英語版)自己同型群と同型で、またファノ平面対称性の群 (英語版)とも同型である。位数168の単純群はPSL2(7)と同型であり、位数60の交代群 A5(PSL2(4)、PSL2(5)、正二十面体群と同型。)に次いで2番目に小さな非可換 単純群である。

定義

[編集 ]
射影特殊線型群」も参照

一般線型群GL2(7)は、7個の要素からなる有限体 F7上の行列式が0でない2次正方行列全体のなす群である。SL2(7)はGL2(7)の部分群であり、行列式が1のものだけからなる。このときPSL2(7)は商群

S L 2 ( 7 ) / { I , I } {\displaystyle \mathrm {SL} _{2}(7)/\{I,-I\}} {\displaystyle \mathrm {SL} _{2}(7)/\{I,-I\}}

として定義される。ここで、I単位行列である。すなわち、SL2(7)内で1倍と-1倍を同一視したものがPSL2(7)である。

同型

[編集 ]

以下の群はすべて同型である。

  • PSL2(7)
  • GL3(2)
    F2においてGL, SL, PGL, PSLの区別はないので、ただちに次の同型もわかる。
    • SL3(2)
    • PGL3(2)
    • PSL3(2)
  • クラインの平面4次曲線の自己同型群
  • ファノ平面の対称性の群

性質

[編集 ]

PSL2(7)は168個の要素を持つ。これは行列の取り得る列の数を数え上げることで確認できる。1列目には72−1 = 48通りの組み合わせが存在する。2列目には72−7 = 42通りの組み合わせが存在する。ここで行列式が1のものを取り出すために7−1 = 6で割り、Iと-Iを同一視するので2で割る。すると (×ばつ42)/(×ばつ2) = 168が得られる。

一般にPSLn(q)は n, q ≥ 2 (q素数の冪)のとき、 (n, q) = (2, 2), (2, 3)という例外を除いて単純群となる。 PSL2(2)は対称群 S3に同型であり、PSL2(3)は交代群A4に同型である。PSL2(7)は交代群A5に次いで2番目に小さな非可換単純群である。

PSL2(7)は6個の共役類および非同型な既約表現をもつ。各共役類の大きさは1, 21, 42, 56, 24, 24であり、各既約表現の次元は1, 3, 3, 6, 7, 8である。

指標表

1 A 1 2 A 21 4 A 42 3 A 56 7 A 24 7 B 24 χ 1 1 1 1 1 1 1 χ 2 3 1 1 0 σ σ ¯ χ 3 3 1 1 0 σ ¯ σ χ 4 6 2 0 0 1 1 χ 5 7 1 1 1 0 0 χ 6 8 0 0 1 1 1 {\displaystyle {\begin{array}{r|cccccc}&1A_{1}&2A_{21}&4A_{42}&3A_{56}&7A_{24}&7B_{24}\\\hline \chi _{1}&1&1&1&1&1&1\\\chi _{2}&3&-1&1&0&\sigma &{\bar {\sigma }}\\\chi _{3}&3&-1&1&0&{\bar {\sigma }}&\sigma \\\chi _{4}&6&2&0&0&-1&-1\\\chi _{5}&7&-1&-1&1&0&0\\\chi _{6}&8&0&0&-1&1&1\\\end{array}}} {\displaystyle {\begin{array}{r|cccccc}&1A_{1}&2A_{21}&4A_{42}&3A_{56}&7A_{24}&7B_{24}\\\hline \chi _{1}&1&1&1&1&1&1\\\chi _{2}&3&-1&1&0&\sigma &{\bar {\sigma }}\\\chi _{3}&3&-1&1&0&{\bar {\sigma }}&\sigma \\\chi _{4}&6&2&0&0&-1&-1\\\chi _{5}&7&-1&-1&1&0&0\\\chi _{6}&8&0&0&-1&1&1\\\end{array}}}

ただし σ = ( 1 + i 7 ) / 2 {\displaystyle \sigma =(-1+i{\sqrt {7}})/2} {\displaystyle \sigma =(-1+i{\sqrt {7}})/2} とする。

PSL2(7)の位数は168=×ばつ8なので、位数3,7,8のシロー部分群を持つ。素数位数の群は巡回群に限られるので、前者二つが巡回群であることは容易にわかる。共役類3A56の任意の要素はシロー3部分群を生成する。また、共役類7A24, 7B24の任意の要素はシロー7部分群を生成する。シロー2部分群は位数8の二面体群である。これは共役類2A21の任意の要素の中心化群として記述できる。GL3(2)としての実現では、シロー2部分群は上三角行列の全体と一致する。

参考文献

[編集 ]

さらに詳しく

[編集 ]

関連項目

[編集 ]

外部リンク

[編集 ]

AltStyle によって変換されたページ (->オリジナル) /