Jump to content
Wikipedia The Free Encyclopedia

Hilbert–Schmidt integral operator

From Wikipedia, the free encyclopedia
Type o integral transform in mathematics

In mathematics, a Hilbert–Schmidt integral operator is a type of integral transform. Specifically, given a domain Ω in Rn, any k : Ω × Ω → C such that

Ω Ω | k ( x , y ) | 2 d x d y < , {\displaystyle \int _{\Omega }\int _{\Omega }|k(x,y)|^{2},円dx,円dy<\infty ,} {\displaystyle \int _{\Omega }\int _{\Omega }|k(x,y)|^{2},円dx,円dy<\infty ,}

is called a Hilbert–Schmidt kernel. The associated integral operator T : L2(Ω) → L2(Ω) given by

( T f ) ( x ) = Ω k ( x , y ) f ( y ) d y {\displaystyle (Tf)(x)=\int _{\Omega }k(x,y)f(y),円dy} {\displaystyle (Tf)(x)=\int _{\Omega }k(x,y)f(y),円dy}

is called a Hilbert–Schmidt integral operator.[1] [2] T is a Hilbert–Schmidt operator with Hilbert–Schmidt norm

T H S = k L 2 . {\displaystyle \Vert T\Vert _{\mathrm {HS} }=\Vert k\Vert _{L^{2}}.} {\displaystyle \Vert T\Vert _{\mathrm {HS} }=\Vert k\Vert _{L^{2}}.}

Hilbert–Schmidt integral operators are both continuous and compact.[3]

The concept of a Hilbert–Schmidt integral operator may be extended to any locally compact Hausdorff space X equipped with a positive Borel measure. If L2(X) is separable, and k belongs to L2(X ×ばつ X), then the operator T : L2(X) → L2(X) defined by

( T f ) ( x ) = X k ( x , y ) f ( y ) d y {\displaystyle (Tf)(x)=\int _{X}k(x,y)f(y),円dy} {\displaystyle (Tf)(x)=\int _{X}k(x,y)f(y),円dy}

is compact. If

k ( x , y ) = k ( y , x ) ¯ , {\displaystyle k(x,y)={\overline {k(y,x)}},} {\displaystyle k(x,y)={\overline {k(y,x)}},}

then T is also self-adjoint and so the spectral theorem applies. This is one of the fundamental constructions of such operators, which often reduces problems about infinite-dimensional vector spaces to questions about well-understood finite-dimensional eigenspaces.[4]

See also

[edit ]

Notes

[edit ]
  1. ^ Simon 1978, p. 14.
  2. ^ Bump 1998, pp. 168.
  3. ^ Renardy & Rogers 2004, pp. 260, 262.
  4. ^ Bump 1998, pp. 168–185.

References

[edit ]
  • Renardy, Michael; Rogers, Robert C. (2004年01月08日). An Introduction to Partial Differential Equations. New York Berlin Heidelberg: Springer Science & Business Media. ISBN 0-387-00444-0.
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics

AltStyle によって変換されたページ (->オリジナル) /