Jump to content
Wikipedia The Free Encyclopedia

Besov space

From Wikipedia, the free encyclopedia
Generalization of Sobolev spaces

In mathematics, the Besov space (named after Oleg Vladimirovich Besov) B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is a complete quasinormed space which is a Banach space when 1 ≤ p, q ≤ ∞. These spaces, as well as the similarly defined Triebel–Lizorkin spaces, serve to generalize more elementary function spaces such as Sobolev spaces and are effective at measuring regularity properties of functions.

Definition

[edit ]

Several equivalent definitions exist. One of them is given below. This definition is quite limited because it does not extend to the range s ≤ 0.

Let

Δ h f ( x ) = f ( x h ) f ( x ) {\displaystyle \Delta _{h}f(x)=f(x-h)-f(x)} {\displaystyle \Delta _{h}f(x)=f(x-h)-f(x)}

and define the modulus of continuity by

ω p 2 ( f , t ) = sup | h | t Δ h 2 f p {\displaystyle \omega _{p}^{2}(f,t)=\sup _{|h|\leq t}\left\|\Delta _{h}^{2}f\right\|_{p}} {\displaystyle \omega _{p}^{2}(f,t)=\sup _{|h|\leq t}\left\|\Delta _{h}^{2}f\right\|_{p}}

Let n be a non-negative integer and define: s = n + α with 0 < α ≤ 1. The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} {\displaystyle B_{p,q}^{s}(\mathbf {R} )} contains all functions f such that

f W n , p ( R ) , 0 | ω p 2 ( f ( n ) , t ) t α | q d t t < . {\displaystyle f\in W^{n,p}(\mathbf {R} ),\qquad \int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}<\infty .} {\displaystyle f\in W^{n,p}(\mathbf {R} ),\qquad \int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}<\infty .}

Norm

[edit ]

The Besov space B p , q s ( R ) {\displaystyle B_{p,q}^{s}(\mathbf {R} )} {\displaystyle B_{p,q}^{s}(\mathbf {R} )} is equipped with the norm

f B p , q s ( R ) = ( f W n , p ( R ) q + 0 | ω p 2 ( f ( n ) , t ) t α | q d t t ) 1 q {\displaystyle \left\|f\right\|_{B_{p,q}^{s}(\mathbf {R} )}=\left(\|f\|_{W^{n,p}(\mathbf {R} )}^{q}+\int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}\right)^{\frac {1}{q}}} {\displaystyle \left\|f\right\|_{B_{p,q}^{s}(\mathbf {R} )}=\left(\|f\|_{W^{n,p}(\mathbf {R} )}^{q}+\int _{0}^{\infty }\left|{\frac {\omega _{p}^{2}\left(f^{(n)},t\right)}{t^{\alpha }}}\right|^{q}{\frac {dt}{t}}\right)^{\frac {1}{q}}}

The Besov spaces B 2 , 2 s ( R ) {\displaystyle B_{2,2}^{s}(\mathbf {R} )} {\displaystyle B_{2,2}^{s}(\mathbf {R} )} coincide with the more classical Sobolev spaces H s ( R ) {\displaystyle H^{s}(\mathbf {R} )} {\displaystyle H^{s}(\mathbf {R} )}.

If p = q {\displaystyle p=q} {\displaystyle p=q} and s {\displaystyle s} {\displaystyle s} is not an integer, then B p , p s ( R ) = W ¯ s , p ( R ) {\displaystyle B_{p,p}^{s}(\mathbf {R} )={\bar {W}}^{s,p}(\mathbf {R} )} {\displaystyle B_{p,p}^{s}(\mathbf {R} )={\bar {W}}^{s,p}(\mathbf {R} )}, where W ¯ s , p ( R ) {\displaystyle {\bar {W}}^{s,p}(\mathbf {R} )} {\displaystyle {\bar {W}}^{s,p}(\mathbf {R} )} denotes the Sobolev–Slobodeckij space.

References

[edit ]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Stub icon

This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /