Jump to content
Wikipedia The Free Encyclopedia

Discrete spectrum (mathematics)

From Wikipedia, the free encyclopedia

In mathematics, specifically in spectral theory, a discrete spectrum of a closed linear operator is defined as the set of isolated points of its spectrum such that the rank of the corresponding Riesz projector is finite.

Definition

[edit ]

A point λ C {\displaystyle \lambda \in \mathbb {C} } {\displaystyle \lambda \in \mathbb {C} } in the spectrum σ ( A ) {\displaystyle \sigma (A)} {\displaystyle \sigma (A)} of a closed linear operator A : B B {\displaystyle A:,円{\mathfrak {B}}\to {\mathfrak {B}}} {\displaystyle A:,円{\mathfrak {B}}\to {\mathfrak {B}}} in the Banach space B {\displaystyle {\mathfrak {B}}} {\displaystyle {\mathfrak {B}}} with domain D ( A ) B {\displaystyle {\mathfrak {D}}(A)\subset {\mathfrak {B}}} {\displaystyle {\mathfrak {D}}(A)\subset {\mathfrak {B}}} is said to belong to discrete spectrum σ d i s c ( A ) {\displaystyle \sigma _{\mathrm {disc} }(A)} {\displaystyle \sigma _{\mathrm {disc} }(A)} of A {\displaystyle A} {\displaystyle A} if the following two conditions are satisfied:[1]

  1. λ {\displaystyle \lambda } {\displaystyle \lambda } is an isolated point in σ ( A ) {\displaystyle \sigma (A)} {\displaystyle \sigma (A)};
  2. The rank of the corresponding Riesz projector P λ = 1 2 π i Γ ( A z I B ) 1 d z {\displaystyle P_{\lambda }={\frac {-1}{2\pi \mathrm {i} }}\oint _{\Gamma }(A-zI_{\mathfrak {B}})^{-1},円dz} {\displaystyle P_{\lambda }={\frac {-1}{2\pi \mathrm {i} }}\oint _{\Gamma }(A-zI_{\mathfrak {B}})^{-1},円dz} is finite.

Here I B {\displaystyle I_{\mathfrak {B}}} {\displaystyle I_{\mathfrak {B}}} is the identity operator in the Banach space B {\displaystyle {\mathfrak {B}}} {\displaystyle {\mathfrak {B}}} and Γ C {\displaystyle \Gamma \subset \mathbb {C} } {\displaystyle \Gamma \subset \mathbb {C} } is a smooth simple closed counterclockwise-oriented curve bounding an open region Ω C {\displaystyle \Omega \subset \mathbb {C} } {\displaystyle \Omega \subset \mathbb {C} } such that λ {\displaystyle \lambda } {\displaystyle \lambda } is the only point of the spectrum of A {\displaystyle A} {\displaystyle A} in the closure of Ω {\displaystyle \Omega } {\displaystyle \Omega }; that is, σ ( A ) Ω ¯ = { λ } . {\displaystyle \sigma (A)\cap {\overline {\Omega }}=\{\lambda \}.} {\displaystyle \sigma (A)\cap {\overline {\Omega }}=\{\lambda \}.}

Relation to normal eigenvalues

[edit ]

The discrete spectrum σ d i s c ( A ) {\displaystyle \sigma _{\mathrm {disc} }(A)} {\displaystyle \sigma _{\mathrm {disc} }(A)} coincides with the set of normal eigenvalues of A {\displaystyle A} {\displaystyle A}:

σ d i s c ( A ) = { normal eigenvalues of  A } . {\displaystyle \sigma _{\mathrm {disc} }(A)=\{{\mbox{normal eigenvalues of }}A\}.} {\displaystyle \sigma _{\mathrm {disc} }(A)=\{{\mbox{normal eigenvalues of }}A\}.}[2] [3] [4]

Relation to isolated eigenvalues of finite algebraic multiplicity

[edit ]

In general, the rank of the Riesz projector can be larger than the dimension of the root lineal L λ {\displaystyle {\mathfrak {L}}_{\lambda }} {\displaystyle {\mathfrak {L}}_{\lambda }} of the corresponding eigenvalue, and in particular it is possible to have d i m L λ < {\displaystyle \mathrm {dim} ,円{\mathfrak {L}}_{\lambda }<\infty } {\displaystyle \mathrm {dim} ,円{\mathfrak {L}}_{\lambda }<\infty }, r a n k P λ = {\displaystyle \mathrm {rank} ,円P_{\lambda }=\infty } {\displaystyle \mathrm {rank} ,円P_{\lambda }=\infty }. So, there is the following inclusion:

σ d i s c ( A ) { isolated points of the spectrum of  A  with finite algebraic multiplicity } . {\displaystyle \sigma _{\mathrm {disc} }(A)\subset \{{\mbox{isolated points of the spectrum of }}A{\mbox{ with finite algebraic multiplicity}}\}.} {\displaystyle \sigma _{\mathrm {disc} }(A)\subset \{{\mbox{isolated points of the spectrum of }}A{\mbox{ with finite algebraic multiplicity}}\}.}

In particular, for a quasinilpotent operator

Q : l 2 ( N ) l 2 ( N ) , Q : ( a 1 , a 2 , a 3 , ) ( 0 , a 1 / 2 , a 2 / 2 2 , a 3 / 2 3 , ) , {\displaystyle Q:,円l^{2}(\mathbb {N} )\to l^{2}(\mathbb {N} ),\qquad Q:,円(a_{1},a_{2},a_{3},\dots )\mapsto (0,a_{1}/2,a_{2}/2^{2},a_{3}/2^{3},\dots ),} {\displaystyle Q:,円l^{2}(\mathbb {N} )\to l^{2}(\mathbb {N} ),\qquad Q:,円(a_{1},a_{2},a_{3},\dots )\mapsto (0,a_{1}/2,a_{2}/2^{2},a_{3}/2^{3},\dots ),}

one has L λ ( Q ) = { 0 } {\displaystyle {\mathfrak {L}}_{\lambda }(Q)=\{0\}} {\displaystyle {\mathfrak {L}}_{\lambda }(Q)=\{0\}}, r a n k P λ = {\displaystyle \mathrm {rank} ,円P_{\lambda }=\infty } {\displaystyle \mathrm {rank} ,円P_{\lambda }=\infty }, σ ( Q ) = { 0 } {\displaystyle \sigma (Q)=\{0\}} {\displaystyle \sigma (Q)=\{0\}}, σ d i s c ( Q ) = {\displaystyle \sigma _{\mathrm {disc} }(Q)=\emptyset } {\displaystyle \sigma _{\mathrm {disc} }(Q)=\emptyset }.

Relation to the point spectrum

[edit ]

The discrete spectrum σ d i s c ( A ) {\displaystyle \sigma _{\mathrm {disc} }(A)} {\displaystyle \sigma _{\mathrm {disc} }(A)} of an operator A {\displaystyle A} {\displaystyle A} is not to be confused with the point spectrum σ p ( A ) {\displaystyle \sigma _{\mathrm {p} }(A)} {\displaystyle \sigma _{\mathrm {p} }(A)}, which is defined as the set of eigenvalues of A {\displaystyle A} {\displaystyle A}. While each point of the discrete spectrum belongs to the point spectrum,

σ d i s c ( A ) σ p ( A ) , {\displaystyle \sigma _{\mathrm {disc} }(A)\subset \sigma _{\mathrm {p} }(A),} {\displaystyle \sigma _{\mathrm {disc} }(A)\subset \sigma _{\mathrm {p} }(A),}

the converse is not necessarily true: the point spectrum does not necessarily consist of isolated points of the spectrum, as one can see from the example of the left shift operator, L : l 2 ( N ) l 2 ( N ) , L : ( a 1 , a 2 , a 3 , ) ( a 2 , a 3 , a 4 , ) . {\displaystyle L:,円l^{2}(\mathbb {N} )\to l^{2}(\mathbb {N} ),\quad L:,円(a_{1},a_{2},a_{3},\dots )\mapsto (a_{2},a_{3},a_{4},\dots ).} {\displaystyle L:,円l^{2}(\mathbb {N} )\to l^{2}(\mathbb {N} ),\quad L:,円(a_{1},a_{2},a_{3},\dots )\mapsto (a_{2},a_{3},a_{4},\dots ).} For this operator, the point spectrum is the unit disc of the complex plane, the spectrum is the closure of the unit disc, while the discrete spectrum is empty:

σ p ( L ) = D 1 , σ ( L ) = D 1 ¯ ; σ d i s c ( L ) = . {\displaystyle \sigma _{\mathrm {p} }(L)=\mathbb {D} _{1},\qquad \sigma (L)={\overline {\mathbb {D} _{1}}};\qquad \sigma _{\mathrm {disc} }(L)=\emptyset .} {\displaystyle \sigma _{\mathrm {p} }(L)=\mathbb {D} _{1},\qquad \sigma (L)={\overline {\mathbb {D} _{1}}};\qquad \sigma _{\mathrm {disc} }(L)=\emptyset .}

See also

[edit ]

References

[edit ]
  1. ^ Reed, M.; Simon, B. (1978). Methods of modern mathematical physics, vol. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York.
  2. ^ Gohberg, I. C; Kreĭn, M. G. (1960). "Fundamental aspects of defect numbers, root numbers and indexes of linear operators". American Mathematical Society Translations. 13: 185–264.
  3. ^ Gohberg, I. C; Kreĭn, M. G. (1969). Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, Providence, R.I.
  4. ^ Boussaid, N.; Comech, A. (2019). Nonlinear Dirac equation. Spectral stability of solitary waves. American Mathematical Society, Providence, R.I. ISBN 978-1-4704-4395-5.
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics

AltStyle によって変換されたページ (->オリジナル) /