Jump to content
Wikipedia The Free Encyclopedia

Distinguished space

From Wikipedia, the free encyclopedia
TVS whose strong dual is barralled
This article relies largely or entirely on a single source . Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.
Find sources: "Distinguished space" – news · newspapers · books · scholar · JSTOR
(June 2020)

In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual.

Definition

[edit ]

Suppose that X {\displaystyle X} {\displaystyle X} is a locally convex space and let X {\displaystyle X^{\prime }} {\displaystyle X^{\prime }} and X b {\displaystyle X_{b}^{\prime }} {\displaystyle X_{b}^{\prime }} denote the strong dual of X {\displaystyle X} {\displaystyle X} (that is, the continuous dual space of X {\displaystyle X} {\displaystyle X} endowed with the strong dual topology). Let X {\displaystyle X^{\prime \prime }} {\displaystyle X^{\prime \prime }} denote the continuous dual space of X b {\displaystyle X_{b}^{\prime }} {\displaystyle X_{b}^{\prime }} and let X b {\displaystyle X_{b}^{\prime \prime }} {\displaystyle X_{b}^{\prime \prime }} denote the strong dual of X b . {\displaystyle X_{b}^{\prime }.} {\displaystyle X_{b}^{\prime }.} Let X σ {\displaystyle X_{\sigma }^{\prime \prime }} {\displaystyle X_{\sigma }^{\prime \prime }} denote X {\displaystyle X^{\prime \prime }} {\displaystyle X^{\prime \prime }} endowed with the weak-* topology induced by X , {\displaystyle X^{\prime },} {\displaystyle X^{\prime },} where this topology is denoted by σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} (that is, the topology of pointwise convergence on X {\displaystyle X^{\prime }} {\displaystyle X^{\prime }}). We say that a subset W {\displaystyle W} {\displaystyle W} of X {\displaystyle X^{\prime \prime }} {\displaystyle X^{\prime \prime }} is σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-bounded if it is a bounded subset of X σ {\displaystyle X_{\sigma }^{\prime \prime }} {\displaystyle X_{\sigma }^{\prime \prime }} and we call the closure of W {\displaystyle W} {\displaystyle W} in the TVS X σ {\displaystyle X_{\sigma }^{\prime \prime }} {\displaystyle X_{\sigma }^{\prime \prime }} the σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-closure of W {\displaystyle W} {\displaystyle W}. If B {\displaystyle B} {\displaystyle B} is a subset of X {\displaystyle X} {\displaystyle X} then the polar of B {\displaystyle B} {\displaystyle B} is B := { x X : sup b B b , x 1 } . {\displaystyle B^{\circ }:=\left\{x^{\prime }\in X^{\prime }:\sup _{b\in B}\left\langle b,x^{\prime }\right\rangle \leq 1\right\}.} {\displaystyle B^{\circ }:=\left\{x^{\prime }\in X^{\prime }:\sup _{b\in B}\left\langle b,x^{\prime }\right\rangle \leq 1\right\}.}

A Hausdorff locally convex space X {\displaystyle X} {\displaystyle X} is called a distinguished space if it satisfies any of the following equivalent conditions:

  1. If W X {\displaystyle W\subseteq X^{\prime \prime }} {\displaystyle W\subseteq X^{\prime \prime }} is a σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-bounded subset of X {\displaystyle X^{\prime \prime }} {\displaystyle X^{\prime \prime }} then there exists a bounded subset B {\displaystyle B} {\displaystyle B} of X b {\displaystyle X_{b}^{\prime \prime }} {\displaystyle X_{b}^{\prime \prime }} whose σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-closure contains W {\displaystyle W} {\displaystyle W}.[1]
  2. If W X {\displaystyle W\subseteq X^{\prime \prime }} {\displaystyle W\subseteq X^{\prime \prime }} is a σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-bounded subset of X {\displaystyle X^{\prime \prime }} {\displaystyle X^{\prime \prime }} then there exists a bounded subset B {\displaystyle B} {\displaystyle B} of X {\displaystyle X} {\displaystyle X} such that W {\displaystyle W} {\displaystyle W} is contained in B := { x X : sup x B x , x 1 } , {\displaystyle B^{\circ \circ }:=\left\{x^{\prime \prime }\in X^{\prime \prime }:\sup _{x^{\prime }\in B^{\circ }}\left\langle x^{\prime },x^{\prime \prime }\right\rangle \leq 1\right\},} {\displaystyle B^{\circ \circ }:=\left\{x^{\prime \prime }\in X^{\prime \prime }:\sup _{x^{\prime }\in B^{\circ }}\left\langle x^{\prime },x^{\prime \prime }\right\rangle \leq 1\right\},} which is the polar (relative to the duality X , X {\displaystyle \left\langle X^{\prime },X^{\prime \prime }\right\rangle } {\displaystyle \left\langle X^{\prime },X^{\prime \prime }\right\rangle }) of B . {\displaystyle B^{\circ }.} {\displaystyle B^{\circ }.}[1]
  3. The strong dual of X {\displaystyle X} {\displaystyle X} is a barrelled space.[1]

If in addition X {\displaystyle X} {\displaystyle X} is a metrizable locally convex topological vector space then this list may be extended to include:

  1. (Grothendieck) The strong dual of X {\displaystyle X} {\displaystyle X} is a bornological space.[1]

Sufficient conditions

[edit ]

All normed spaces and semi-reflexive spaces are distinguished spaces.[2] LF spaces are distinguished spaces.

The strong dual space X b {\displaystyle X_{b}^{\prime }} {\displaystyle X_{b}^{\prime }} of a Fréchet space X {\displaystyle X} {\displaystyle X} is distinguished if and only if X {\displaystyle X} {\displaystyle X} is quasibarrelled.[3]

Properties

[edit ]

Every locally convex distinguished space is an H-space.[2]

Examples

[edit ]

There exist distinguished Banach spaces spaces that are not semi-reflexive.[1] The strong dual of a distinguished Banach space is not necessarily separable; l 1 {\displaystyle l^{1}} {\displaystyle l^{1}} is such a space.[4] The strong dual space of a distinguished Fréchet space is not necessarily metrizable.[1] There exists a distinguished semi-reflexive non-reflexive non-quasibarrelled Mackey space X {\displaystyle X} {\displaystyle X} whose strong dual is a non-reflexive Banach space.[1] There exist H-spaces that are not distinguished spaces.[1]

Fréchet Montel spaces are distinguished spaces.

See also

[edit ]

References

[edit ]

Bibliography

[edit ]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs

AltStyle によって変換されたページ (->オリジナル) /