Distinguished space
Find sources: "Distinguished space" – news · newspapers · books · scholar · JSTOR (June 2020)
In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual.
Definition
[edit ]Suppose that {\displaystyle X} is a locally convex space and let {\displaystyle X^{\prime }} and {\displaystyle X_{b}^{\prime }} denote the strong dual of {\displaystyle X} (that is, the continuous dual space of {\displaystyle X} endowed with the strong dual topology). Let {\displaystyle X^{\prime \prime }} denote the continuous dual space of {\displaystyle X_{b}^{\prime }} and let {\displaystyle X_{b}^{\prime \prime }} denote the strong dual of {\displaystyle X_{b}^{\prime }.} Let {\displaystyle X_{\sigma }^{\prime \prime }} denote {\displaystyle X^{\prime \prime }} endowed with the weak-* topology induced by {\displaystyle X^{\prime },} where this topology is denoted by {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} (that is, the topology of pointwise convergence on {\displaystyle X^{\prime }}). We say that a subset {\displaystyle W} of {\displaystyle X^{\prime \prime }} is {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-bounded if it is a bounded subset of {\displaystyle X_{\sigma }^{\prime \prime }} and we call the closure of {\displaystyle W} in the TVS {\displaystyle X_{\sigma }^{\prime \prime }} the {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-closure of {\displaystyle W}. If {\displaystyle B} is a subset of {\displaystyle X} then the polar of {\displaystyle B} is {\displaystyle B^{\circ }:=\left\{x^{\prime }\in X^{\prime }:\sup _{b\in B}\left\langle b,x^{\prime }\right\rangle \leq 1\right\}.}
A Hausdorff locally convex space {\displaystyle X} is called a distinguished space if it satisfies any of the following equivalent conditions:
- If {\displaystyle W\subseteq X^{\prime \prime }} is a {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-bounded subset of {\displaystyle X^{\prime \prime }} then there exists a bounded subset {\displaystyle B} of {\displaystyle X_{b}^{\prime \prime }} whose {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-closure contains {\displaystyle W}.[1]
- If {\displaystyle W\subseteq X^{\prime \prime }} is a {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)}-bounded subset of {\displaystyle X^{\prime \prime }} then there exists a bounded subset {\displaystyle B} of {\displaystyle X} such that {\displaystyle W} is contained in {\displaystyle B^{\circ \circ }:=\left\{x^{\prime \prime }\in X^{\prime \prime }:\sup _{x^{\prime }\in B^{\circ }}\left\langle x^{\prime },x^{\prime \prime }\right\rangle \leq 1\right\},} which is the polar (relative to the duality {\displaystyle \left\langle X^{\prime },X^{\prime \prime }\right\rangle }) of {\displaystyle B^{\circ }.}[1]
- The strong dual of {\displaystyle X} is a barrelled space.[1]
If in addition {\displaystyle X} is a metrizable locally convex topological vector space then this list may be extended to include:
- (Grothendieck) The strong dual of {\displaystyle X} is a bornological space.[1]
Sufficient conditions
[edit ]All normed spaces and semi-reflexive spaces are distinguished spaces.[2] LF spaces are distinguished spaces.
The strong dual space {\displaystyle X_{b}^{\prime }} of a Fréchet space {\displaystyle X} is distinguished if and only if {\displaystyle X} is quasibarrelled.[3]
Properties
[edit ]Every locally convex distinguished space is an H-space.[2]
Examples
[edit ]There exist distinguished Banach spaces spaces that are not semi-reflexive.[1] The strong dual of a distinguished Banach space is not necessarily separable; {\displaystyle l^{1}} is such a space.[4] The strong dual space of a distinguished Fréchet space is not necessarily metrizable.[1] There exists a distinguished semi-reflexive non-reflexive non-quasibarrelled Mackey space {\displaystyle X} whose strong dual is a non-reflexive Banach space.[1] There exist H-spaces that are not distinguished spaces.[1]
Fréchet Montel spaces are distinguished spaces.
See also
[edit ]- Montel space – Barrelled space where closed and bounded subsets are compact
- Semi-reflexive space
References
[edit ]- ^ a b c d e f g h Khaleelulla 1982, pp. 32–63.
- ^ a b Khaleelulla 1982, pp. 28–63.
- ^ Gabriyelyan, S.S. "On topological spaces and topological groups with certain local countable networks (2014)
- ^ Khaleelulla 1982, pp. 32–630.
Bibliography
[edit ]- Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi:10.5802/aif.16 . MR 0042609.
- Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
- Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
- Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
- Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
- Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
- Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
- Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.