Jump to content
Wikipedia The Free Encyclopedia

Bochner integral

From Wikipedia, the free encyclopedia
Concept in mathematics
This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (December 2024) (Learn how and when to remove this message)

In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of a multidimensional Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.

Definition

[edit ]

Let ( X , Σ , μ ) {\displaystyle (X,\Sigma ,\mu )} {\displaystyle (X,\Sigma ,\mu )} be a measure space, and B {\displaystyle B} {\displaystyle B} be a Banach space, and define a measurable function f : X B {\displaystyle f:X\to B} {\displaystyle f:X\to B}. When B = R {\displaystyle B=\mathbb {R} } {\displaystyle B=\mathbb {R} }, we have the standard Lebesgue integral X f d μ {\displaystyle \int _{X}fd\mu } {\displaystyle \int _{X}fd\mu }, and when B = R n {\displaystyle B=\mathbb {R} ^{n}} {\displaystyle B=\mathbb {R} ^{n}}, we have the standard multidimensional Lebesgue integral X f d μ {\displaystyle \int _{X}{\vec {f}}d\mu } {\displaystyle \int _{X}{\vec {f}}d\mu }. For generic Banach spaces, the Bochner integral extends the above cases.

First, define a simple function to be any finite sum of the form s ( x ) = i = 1 n χ E i ( x ) b i , {\displaystyle s(x)=\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i},} {\displaystyle s(x)=\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i},} where the E i {\displaystyle E_{i}} {\displaystyle E_{i}} are disjoint members of the σ {\displaystyle \sigma } {\displaystyle \sigma }-algebra Σ , {\displaystyle \Sigma ,} {\displaystyle \Sigma ,} the b i {\displaystyle b_{i}} {\displaystyle b_{i}} are distinct elements of B , {\displaystyle B,} {\displaystyle B,} and χE is the characteristic function of E . {\displaystyle E.} {\displaystyle E.} If μ ( E i ) {\displaystyle \mu \left(E_{i}\right)} {\displaystyle \mu \left(E_{i}\right)} is finite whenever b i 0 , {\displaystyle b_{i}\neq 0,} {\displaystyle b_{i}\neq 0,} then the simple function is integrable, and the integral is then defined by X [ i = 1 n χ E i ( x ) b i ] d μ = i = 1 n μ ( E i ) b i {\displaystyle \int _{X}\left[\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i}\right],円d\mu =\sum _{i=1}^{n}\mu (E_{i})b_{i}} {\displaystyle \int _{X}\left[\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i}\right],円d\mu =\sum _{i=1}^{n}\mu (E_{i})b_{i}} exactly as it is for the ordinary Lebesgue integral.

A measurable function f : X B {\displaystyle f:X\to B} {\displaystyle f:X\to B} is Bochner integrable if there exists a sequence of integrable simple functions s n {\displaystyle s_{n}} {\displaystyle s_{n}} such that lim n X f s n B d μ = 0 , {\displaystyle \lim _{n\to \infty }\int _{X}\|f-s_{n}\|_{B},円d\mu =0,} {\displaystyle \lim _{n\to \infty }\int _{X}\|f-s_{n}\|_{B},円d\mu =0,} where the integral on the left-hand side is an ordinary Lebesgue integral.

In this case, the Bochner integral is defined by X f d μ = lim n X s n d μ . {\displaystyle \int _{X}f,円d\mu =\lim _{n\to \infty }\int _{X}s_{n},円d\mu .} {\displaystyle \int _{X}f,円d\mu =\lim _{n\to \infty }\int _{X}s_{n},円d\mu .}

It can be shown that the sequence { X s n d μ } n = 1 {\displaystyle \left\{\int _{X}s_{n},円d\mu \right\}_{n=1}^{\infty }} {\displaystyle \left\{\int _{X}s_{n},円d\mu \right\}_{n=1}^{\infty }} is a Cauchy sequence in the Banach space B , {\displaystyle B,} {\displaystyle B,} hence the limit on the right exists; furthermore, the limit is independent of the approximating sequence of simple functions { s n } n = 1 . {\displaystyle \{s_{n}\}_{n=1}^{\infty }.} {\displaystyle \{s_{n}\}_{n=1}^{\infty }.} These remarks show that the integral is well-defined (i.e independent of any choices). It can be shown that a function is Bochner integrable if and only if it lies in the Bochner space L 1 . {\displaystyle L^{1}.} {\displaystyle L^{1}.}

Properties

[edit ]

Elementary properties

[edit ]

Many of the familiar properties of the Lebesgue integral continue to hold for the Bochner integral. Particularly useful is Bochner's criterion for integrability, which states that if ( X , Σ , μ ) {\displaystyle (X,\Sigma ,\mu )} {\displaystyle (X,\Sigma ,\mu )} is a measure space, then a Bochner-measurable function f : X B {\displaystyle f\colon X\to B} {\displaystyle f\colon X\to B} is Bochner integrable if and only if X f B d μ < . {\displaystyle \int _{X}\|f\|_{B},円\mathrm {d} \mu <\infty .} {\displaystyle \int _{X}\|f\|_{B},円\mathrm {d} \mu <\infty .}

Here, a function f : X B {\displaystyle f\colon X\to B} {\displaystyle f\colon X\to B} is called Bochner measurable if it is equal μ {\displaystyle \mu } {\displaystyle \mu }-almost everywhere to a function g {\displaystyle g} {\displaystyle g} taking values in a separable subspace B 0 {\displaystyle B_{0}} {\displaystyle B_{0}} of B {\displaystyle B} {\displaystyle B}, and such that the inverse image g 1 ( U ) {\displaystyle g^{-1}(U)} {\displaystyle g^{-1}(U)} of every open set U {\displaystyle U} {\displaystyle U} in B {\displaystyle B} {\displaystyle B} belongs to Σ {\displaystyle \Sigma } {\displaystyle \Sigma }. Equivalently, f {\displaystyle f} {\displaystyle f} is the limit μ {\displaystyle \mu } {\displaystyle \mu }-almost everywhere of a sequence of countably-valued simple functions.

Linear operators

[edit ]

If T : B B {\displaystyle T\colon B\to B'} {\displaystyle T\colon B\to B'} is a continuous linear operator between Banach spaces B {\displaystyle B} {\displaystyle B} and B {\displaystyle B'} {\displaystyle B'}, and f : X B {\displaystyle f\colon X\to B} {\displaystyle f\colon X\to B} is Bochner integrable, then it is relatively straightforward to show that T f : X B {\displaystyle Tf\colon X\to B'} {\displaystyle Tf\colon X\to B'} is Bochner integrable and integration and the application of T {\displaystyle T} {\displaystyle T} may be interchanged: E T f d μ = T E f d μ {\displaystyle \int _{E}Tf,円\mathrm {d} \mu =T\int _{E}f,円\mathrm {d} \mu } {\displaystyle \int _{E}Tf,円\mathrm {d} \mu =T\int _{E}f,円\mathrm {d} \mu } for all measurable subsets E Σ {\displaystyle E\in \Sigma } {\displaystyle E\in \Sigma }.

A non-trivially stronger form of this result, known as Hille's theorem, also holds for closed operators.[1] If T : B B {\displaystyle T\colon B\to B'} {\displaystyle T\colon B\to B'} is a closed linear operator between Banach spaces B {\displaystyle B} {\displaystyle B} and B {\displaystyle B'} {\displaystyle B'} and both f : X B {\displaystyle f\colon X\to B} {\displaystyle f\colon X\to B} and T f : X B {\displaystyle Tf\colon X\to B'} {\displaystyle Tf\colon X\to B'} are Bochner integrable, then E T f d μ = T E f d μ {\displaystyle \int _{E}Tf,円\mathrm {d} \mu =T\int _{E}f,円\mathrm {d} \mu } {\displaystyle \int _{E}Tf,円\mathrm {d} \mu =T\int _{E}f,円\mathrm {d} \mu } for all measurable subsets E Σ {\displaystyle E\in \Sigma } {\displaystyle E\in \Sigma }.

Dominated convergence theorem

[edit ]

A version of the dominated convergence theorem also holds for the Bochner integral. Specifically, if f n : X B {\displaystyle f_{n}\colon X\to B} {\displaystyle f_{n}\colon X\to B} is a sequence of measurable functions on a complete measure space tending almost everywhere to a limit function f {\displaystyle f} {\displaystyle f}, and if f n ( x ) B g ( x ) {\displaystyle \|f_{n}(x)\|_{B}\leq g(x)} {\displaystyle \|f_{n}(x)\|_{B}\leq g(x)} for almost every x X {\displaystyle x\in X} {\displaystyle x\in X}, and g L 1 ( μ ) {\displaystyle g\in L^{1}(\mu )} {\displaystyle g\in L^{1}(\mu )}, then E f f n B d μ 0 {\displaystyle \int _{E}\|f-f_{n}\|_{B},円\mathrm {d} \mu \to 0} {\displaystyle \int _{E}\|f-f_{n}\|_{B},円\mathrm {d} \mu \to 0} as n {\displaystyle n\to \infty } {\displaystyle n\to \infty } and E f n d μ E f d μ {\displaystyle \int _{E}f_{n},円\mathrm {d} \mu \to \int _{E}f,円\mathrm {d} \mu } {\displaystyle \int _{E}f_{n},円\mathrm {d} \mu \to \int _{E}f,円\mathrm {d} \mu } for all E Σ {\displaystyle E\in \Sigma } {\displaystyle E\in \Sigma }.

If f {\displaystyle f} {\displaystyle f} is Bochner integrable, then the inequality E f d μ B E f B d μ {\displaystyle \left\|\int _{E}f,円\mathrm {d} \mu \right\|_{B}\leq \int _{E}\|f\|_{B},円\mathrm {d} \mu } {\displaystyle \left\|\int _{E}f,円\mathrm {d} \mu \right\|_{B}\leq \int _{E}\|f\|_{B},円\mathrm {d} \mu } holds for all E Σ . {\displaystyle E\in \Sigma .} {\displaystyle E\in \Sigma .} In particular, the set function E E f d μ {\displaystyle E\mapsto \int _{E}f,円\mathrm {d} \mu } {\displaystyle E\mapsto \int _{E}f,円\mathrm {d} \mu } defines a countably-additive B {\displaystyle B} {\displaystyle B}-valued vector measure on X {\displaystyle X} {\displaystyle X} which is absolutely continuous with respect to μ {\displaystyle \mu } {\displaystyle \mu }.

Radon–Nikodym property

[edit ]

An important fact about the Bochner integral is that the Radon–Nikodym theorem fails to hold in general, and instead is a property (the Radon–Nikodym property) defining an important class of ′′nice′′ Banach spaces.

Specifically, if μ {\displaystyle \mu } {\displaystyle \mu } is a measure on ( X , Σ ) , {\displaystyle (X,\Sigma ),} {\displaystyle (X,\Sigma ),} then B {\displaystyle B} {\displaystyle B} has the Radon–Nikodym property with respect to μ {\displaystyle \mu } {\displaystyle \mu } if, for every countably-additive vector measure γ {\displaystyle \gamma } {\displaystyle \gamma } on ( X , Σ ) {\displaystyle (X,\Sigma )} {\displaystyle (X,\Sigma )} with values in B {\displaystyle B} {\displaystyle B} which has bounded variation and is absolutely continuous with respect to μ , {\displaystyle \mu ,} {\displaystyle \mu ,} there is a μ {\displaystyle \mu } {\displaystyle \mu }-integrable function g : X B {\displaystyle g:X\to B} {\displaystyle g:X\to B} such that γ ( E ) = E g d μ {\displaystyle \gamma (E)=\int _{E}g,円d\mu } {\displaystyle \gamma (E)=\int _{E}g,円d\mu } for every measurable set E Σ . {\displaystyle E\in \Sigma .} {\displaystyle E\in \Sigma .}[2]

The Banach space B {\displaystyle B} {\displaystyle B} has the Radon–Nikodym property if B {\displaystyle B} {\displaystyle B} has the Radon–Nikodym property with respect to every finite measure.[2] Equivalent formulations include:

  • Bounded discrete-time martingales in B {\displaystyle B} {\displaystyle B} converge a.s.[3]
  • Functions of bounded-variation into B {\displaystyle B} {\displaystyle B} are differentiable a.e.[4]
  • For every bounded D B {\displaystyle D\subseteq B} {\displaystyle D\subseteq B}, there exists f B {\displaystyle f\in B^{*}} {\displaystyle f\in B^{*}} and δ R + {\displaystyle \delta \in \mathbb {R} ^{+}} {\displaystyle \delta \in \mathbb {R} ^{+}} such that { x : f ( x ) + δ > sup f ( D ) } D {\displaystyle \{x:f(x)+\delta >\sup {f(D)}\}\subseteq D} {\displaystyle \{x:f(x)+\delta >\sup {f(D)}\}\subseteq D} has arbitrarily small diameter.[3]

It is known that the space 1 {\displaystyle \ell _{1}} {\displaystyle \ell _{1}} has the Radon–Nikodym property, but c 0 {\displaystyle c_{0}} {\displaystyle c_{0}} and the spaces L ( Ω ) , {\displaystyle L^{\infty }(\Omega ),} {\displaystyle L^{\infty }(\Omega ),} L 1 ( Ω ) , {\displaystyle L^{1}(\Omega ),} {\displaystyle L^{1}(\Omega ),} for Ω {\displaystyle \Omega } {\displaystyle \Omega } an open bounded subset of R n , {\displaystyle \mathbb {R} ^{n},} {\displaystyle \mathbb {R} ^{n},} and C ( K ) , {\displaystyle C(K),} {\displaystyle C(K),} for K {\displaystyle K} {\displaystyle K} an infinite compact space, do not.[5] Spaces with Radon–Nikodym property include separable dual spaces (this is the Dunford–Pettis theorem)[citation needed ] and reflexive spaces, which include, in particular, Hilbert spaces.[2]

Probability

[edit ]

The Bochner integral is used in probability theory for handling random variables and stochastic processes that take values in a Banach space. The classical convergence theorems—such as the dominated convergence theorem—when applied to the Bochner integral, generalizes laws of large numbers and central limit theorems for sequences of Banach-space valued random variables. Such integrals are central to the analysis of distributions in functional spaces and have applications in fields such as stochastic calculus, statistical field theory ,and quantum field theory.

Let ( Ω , F , P ) {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )} {\displaystyle (\Omega ,{\mathcal {F}},\mathbb {P} )} be a probability space, and consider a random variable X : Ω B {\displaystyle X\colon \Omega \to B} {\displaystyle X\colon \Omega \to B} taking values in a Banach space B {\displaystyle B} {\displaystyle B}. When X {\displaystyle X} {\displaystyle X} is Bochner integrable, its expectation is defined by E [ X ] = Ω X d P , {\displaystyle E[X]=\int _{\Omega }X,円d\mathbb {P} ,} {\displaystyle E[X]=\int _{\Omega }X,円d\mathbb {P} ,}which inherits the usual linearity and continuity properties of the classical expectation.

Stochastic process

[edit ]

Consider { X t } t T {\displaystyle \{X_{t}\}_{t\in T}} {\displaystyle \{X_{t}\}_{t\in T}}, a stochastic process that is Banach-space valued. The Bochner integral allows us to define the mean function μ ( t ) = E [ X t ] = Ω X t d P , {\displaystyle \mu (t)=E[X_{t}]=\int _{\Omega }X_{t},円d\mathbb {P} ,} {\displaystyle \mu (t)=E[X_{t}]=\int _{\Omega }X_{t},円d\mathbb {P} ,}whenever each X t {\displaystyle X_{t}} {\displaystyle X_{t}} is Bochner integrable. This approach is useful in stochastic partial differential equations, where each X t {\displaystyle X_{t}} {\displaystyle X_{t}} is a random element in a functional space.

In martingale theory, a sequence { M n } n 1 {\displaystyle \{M_{n}\}_{n\geq 1}} {\displaystyle \{M_{n}\}_{n\geq 1}} of B {\displaystyle B} {\displaystyle B}-valued random variables is called a martingale with respect to a filtration { F n } n 1 {\displaystyle \{{\mathcal {F}}_{n}\}_{n\geq 1}} {\displaystyle \{{\mathcal {F}}_{n}\}_{n\geq 1}} if each M n {\displaystyle M_{n}} {\displaystyle M_{n}} is F n {\displaystyle {\mathcal {F}}_{n}} {\displaystyle {\mathcal {F}}_{n}}-measurable, Bochner integrable, and satisfies E [ M n + 1 F n ] = M n . {\displaystyle E[M_{n+1}\mid {\mathcal {F}}_{n}]=M_{n}.} {\displaystyle E[M_{n+1}\mid {\mathcal {F}}_{n}]=M_{n}.}The Bochner integral ensures that conditional expectations are well-defined in this Banach space setting.

Gaussian measure

[edit ]

The Bochner integral allows the definition of Gaussian measures on a Banach space, where one often encounters integrals of the form B x , b d μ ( x ) , {\displaystyle \int _{B}\langle x,b^{*}\rangle ,円d\mu (x),} {\displaystyle \int _{B}\langle x,b^{*}\rangle ,円d\mu (x),}where b B {\displaystyle b^{*}\in B^{*}} {\displaystyle b^{*}\in B^{*}} and , {\displaystyle \langle \cdot ,\cdot \rangle } {\displaystyle \langle \cdot ,\cdot \rangle } denotes the dual pairing.

See also

[edit ]

References

[edit ]
  1. ^ Diestel, Joseph; Uhl, Jr., John Jerry (1977). Vector Measures. Mathematical Surveys. Vol. 15. American Mathematical Society. doi:10.1090/surv/015. ISBN 978-0-8218-1515-1. (See Theorem II.2.6)
  2. ^ a b c Bárcenas, Diómedes (2003). "The Radon–Nikodym Theorem for Reflexive Banach Spaces" (PDF). Divulgaciones Matemáticas. 11 (1): 55–59 [pp. 55–56].
  3. ^ a b Bourgin 1983, pp. 31, 33. Thm. 2.3.6-7, conditions (1,4,10).
  4. ^ Bourgin 1983, p. 16. "Early workers in this field were concerned with the Banach space property that each X-valued function of bounded variation on [0,1] be differentiable almost surely. It turns out that this property (known as the Gelfand-Fréchet property) is also equivalent to the RNP [Radon-Nikodym Property]."
  5. ^ Bourgin 1983, p. 14.
Types of
integrals
Integration
techniques
Improper integrals
Stochastic integrals
Miscellaneous
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Derivatives
Measurability
Integrals
Results
Related
Functional calculus
Applications

AltStyle によって変換されたページ (->オリジナル) /