Jump to content
Wikipedia The Free Encyclopedia

Integration using parametric derivatives

From Wikipedia, the free encyclopedia
Method which uses known Integrals to integrate derived functions
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Integration using parametric derivatives" – news · newspapers · books · scholar · JSTOR
(July 2019) (Learn how and when to remove this message)
This article provides insufficient context for those unfamiliar with the subject. Please help improve the article by providing more context for the reader. (June 2019) (Learn how and when to remove this message)
(Learn how and when to remove this message)

In calculus, integration by parametric derivatives, also called parametric integration,[1] is a method which uses known Integrals to integrate derived functions. It is often used in Physics, and is similar to integration by substitution.

Statement of the theorem

[edit ]

By using the Leibniz integral rule with the upper and lower bounds fixed we get that
d d t ( a b f ( x , t ) d x ) = a b t f ( x , t ) d x {\displaystyle {\frac {d}{dt}}\left(\int _{a}^{b}f(x,t)dx\right)=\int _{a}^{b}{\frac {\partial }{\partial t}}f(x,t)dx} {\displaystyle {\frac {d}{dt}}\left(\int _{a}^{b}f(x,t)dx\right)=\int _{a}^{b}{\frac {\partial }{\partial t}}f(x,t)dx}
It is also true for non-finite bounds.

Examples

[edit ]

Example One: Exponential Integral

[edit ]

For example, suppose we want to find the integral

0 x 2 e 3 x d x . {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x},円dx.} {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x},円dx.}

Since this is a product of two functions that are simple to integrate separately, repeated integration by parts is certainly one way to evaluate it. However, we may also evaluate this by starting with a simpler integral and an added parameter, which in this case is t = 3:

0 e t x d x = [ e t x t ] 0 = ( lim x e t x t ) ( e t 0 t ) = 0 ( 1 t ) = 1 t . {\displaystyle {\begin{aligned}&\int _{0}^{\infty }e^{-tx},円dx=\left[{\frac {e^{-tx}}{-t}}\right]_{0}^{\infty }=\left(\lim _{x\to \infty }{\frac {e^{-tx}}{-t}}\right)-\left({\frac {e^{-t0}}{-t}}\right)\\&=0-\left({\frac {1}{-t}}\right)={\frac {1}{t}}.\end{aligned}}} {\displaystyle {\begin{aligned}&\int _{0}^{\infty }e^{-tx},円dx=\left[{\frac {e^{-tx}}{-t}}\right]_{0}^{\infty }=\left(\lim _{x\to \infty }{\frac {e^{-tx}}{-t}}\right)-\left({\frac {e^{-t0}}{-t}}\right)\\&=0-\left({\frac {1}{-t}}\right)={\frac {1}{t}}.\end{aligned}}}

This converges only for t > 0, which is true of the desired integral. Now that we know

0 e t x d x = 1 t , {\displaystyle \int _{0}^{\infty }e^{-tx},円dx={\frac {1}{t}},} {\displaystyle \int _{0}^{\infty }e^{-tx},円dx={\frac {1}{t}},}

we can differentiate both sides twice with respect to t (not x) in order to add the factor of x2 in the original integral.

d 2 d t 2 0 e t x d x = d 2 d t 2 1 t 0 d 2 d t 2 e t x d x = d 2 d t 2 1 t 0 d d t ( x e t x ) d x = d d t ( 1 t 2 ) 0 x 2 e t x d x = 2 t 3 . {\displaystyle {\begin{aligned}&{\frac {d^{2}}{dt^{2}}}\int _{0}^{\infty }e^{-tx},円dx={\frac {d^{2}}{dt^{2}}}{\frac {1}{t}}\\[10pt]&\int _{0}^{\infty }{\frac {d^{2}}{dt^{2}}}e^{-tx},円dx={\frac {d^{2}}{dt^{2}}}{\frac {1}{t}}\\[10pt]&\int _{0}^{\infty }{\frac {d}{dt}}\left(-xe^{-tx}\right),円dx={\frac {d}{dt}}\left(-{\frac {1}{t^{2}}}\right)\\[10pt]&\int _{0}^{\infty }x^{2}e^{-tx},円dx={\frac {2}{t^{3}}}.\end{aligned}}} {\displaystyle {\begin{aligned}&{\frac {d^{2}}{dt^{2}}}\int _{0}^{\infty }e^{-tx},円dx={\frac {d^{2}}{dt^{2}}}{\frac {1}{t}}\\[10pt]&\int _{0}^{\infty }{\frac {d^{2}}{dt^{2}}}e^{-tx},円dx={\frac {d^{2}}{dt^{2}}}{\frac {1}{t}}\\[10pt]&\int _{0}^{\infty }{\frac {d}{dt}}\left(-xe^{-tx}\right),円dx={\frac {d}{dt}}\left(-{\frac {1}{t^{2}}}\right)\\[10pt]&\int _{0}^{\infty }x^{2}e^{-tx},円dx={\frac {2}{t^{3}}}.\end{aligned}}}

This is the same form as the desired integral, where t = 3. Substituting that into the above equation gives the value:

0 x 2 e 3 x d x = 2 3 3 = 2 27 . {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x},円dx={\frac {2}{3^{3}}}={\frac {2}{27}}.} {\displaystyle \int _{0}^{\infty }x^{2}e^{-3x},円dx={\frac {2}{3^{3}}}={\frac {2}{27}}.}

Example Two: Gaussian Integral

[edit ]

Starting with the integral e x 2 t d x = π t {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}t}dx={\frac {\sqrt {\pi }}{\sqrt {t}}}} {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}t}dx={\frac {\sqrt {\pi }}{\sqrt {t}}}}, taking the derivative with respect to t on both sides yields
d d t e x 2 t d x = d d t π t x 2 e x 2 t = π 2 t 3 2 x 2 e x 2 t = π 2 t 3 2 {\displaystyle {\begin{aligned}&{\frac {d}{dt}}\int _{-\infty }^{\infty }e^{-x^{2}t}dx={\frac {d}{dt}}{\frac {\sqrt {\pi }}{\sqrt {t}}}\\&-\int _{-\infty }^{\infty }x^{2}e^{-x^{2}t}=-{\frac {\sqrt {\pi }}{2}}t^{-{\frac {3}{2}}}\\&\int _{-\infty }^{\infty }x^{2}e^{-x^{2}t}={\frac {\sqrt {\pi }}{2}}t^{-{\frac {3}{2}}}\end{aligned}}} {\displaystyle {\begin{aligned}&{\frac {d}{dt}}\int _{-\infty }^{\infty }e^{-x^{2}t}dx={\frac {d}{dt}}{\frac {\sqrt {\pi }}{\sqrt {t}}}\\&-\int _{-\infty }^{\infty }x^{2}e^{-x^{2}t}=-{\frac {\sqrt {\pi }}{2}}t^{-{\frac {3}{2}}}\\&\int _{-\infty }^{\infty }x^{2}e^{-x^{2}t}={\frac {\sqrt {\pi }}{2}}t^{-{\frac {3}{2}}}\end{aligned}}}.
In general, taking the n-th derivative with respect to t gives us
x 2 n e x 2 t = ( 2 n 1 ) ! ! π 2 n t 2 n + 1 2 {\displaystyle \int _{-\infty }^{\infty }x^{2n}e^{-x^{2}t}={\frac {(2n-1)!!{\sqrt {\pi }}}{2^{n}}}t^{-{\frac {2n+1}{2}}}} {\displaystyle \int _{-\infty }^{\infty }x^{2n}e^{-x^{2}t}={\frac {(2n-1)!!{\sqrt {\pi }}}{2^{n}}}t^{-{\frac {2n+1}{2}}}}.

Example Three: A Polynomial

[edit ]

Using the classical x t d x = x t + 1 t + 1 {\displaystyle \int x^{t}dx={\frac {x^{t+1}}{t+1}}} {\displaystyle \int x^{t}dx={\frac {x^{t+1}}{t+1}}} and taking the derivative with respect to t we get
ln ( x ) x t = ln ( x ) x t + 1 t + 1 x t + 1 ( t + 1 ) 2 {\displaystyle \int \ln(x)x^{t}={\frac {\ln(x)x^{t+1}}{t+1}}-{\frac {x^{t+1}}{(t+1)^{2}}}} {\displaystyle \int \ln(x)x^{t}={\frac {\ln(x)x^{t+1}}{t+1}}-{\frac {x^{t+1}}{(t+1)^{2}}}}.

Example Four: Sums

[edit ]

The method can also be applied to sums, as exemplified below.
Use the Weierstrass factorization of the sinh function:
sinh ( z ) z = n = 1 ( π 2 n 2 + z 2 π 2 n 2 ) {\displaystyle {\frac {\sinh(z)}{z}}=\prod _{n=1}^{\infty }\left({\frac {\pi ^{2}n^{2}+z^{2}}{\pi ^{2}n^{2}}}\right)} {\displaystyle {\frac {\sinh(z)}{z}}=\prod _{n=1}^{\infty }\left({\frac {\pi ^{2}n^{2}+z^{2}}{\pi ^{2}n^{2}}}\right)}.
Take the logarithm:
ln ( sinh ( z ) ) ln ( z ) = n = 1 ln ( π 2 n 2 + z 2 π 2 n 2 ) {\displaystyle \ln(\sinh(z))-\ln(z)=\sum _{n=1}^{\infty }\ln \left({\frac {\pi ^{2}n^{2}+z^{2}}{\pi ^{2}n^{2}}}\right)} {\displaystyle \ln(\sinh(z))-\ln(z)=\sum _{n=1}^{\infty }\ln \left({\frac {\pi ^{2}n^{2}+z^{2}}{\pi ^{2}n^{2}}}\right)}.
Derive with respect to z:
coth ( z ) 1 z = n = 1 2 z z 2 + π 2 n 2 {\displaystyle \coth(z)-{\frac {1}{z}}=\sum _{n=1}^{\infty }{\frac {2z}{z^{2}+\pi ^{2}n^{2}}}} {\displaystyle \coth(z)-{\frac {1}{z}}=\sum _{n=1}^{\infty }{\frac {2z}{z^{2}+\pi ^{2}n^{2}}}}.
Let w = z π {\displaystyle w={\frac {z}{\pi }}} {\displaystyle w={\frac {z}{\pi }}}:
1 2 coth ( π w ) π w 1 2 1 z 2 = n = 1 1 n 2 + w 2 {\displaystyle {\frac {1}{2}}{\frac {\coth(\pi w)}{\pi w}}-{\frac {1}{2}}{\frac {1}{z^{2}}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}+w^{2}}}} {\displaystyle {\frac {1}{2}}{\frac {\coth(\pi w)}{\pi w}}-{\frac {1}{2}}{\frac {1}{z^{2}}}=\sum _{n=1}^{\infty }{\frac {1}{n^{2}+w^{2}}}}.

References

[edit ]
  1. ^ Zatja, Aurel J. (December 1989). "Parametric Integration Techniques | Mathematical Association of America" (PDF). www.maa.org. Mathematics Magazine. Retrieved 23 July 2019.
[edit ]

WikiBooks: Parametric_Integration


Stub icon

This mathematical analysis–related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /