Namespaces
Variants
Actions

std::addressof

From cppreference.com
< cpp‎ | memory
 
 
Memory management library
(exposition only*)
Uninitialized memory algorithms Constrained uninitialized memory algorithms Memory resources Uninitialized storage (until C++20)
(until C++20*)
(until C++20*)

Garbage collector support (until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
(C++11)(until C++23)
 
Defined in header <memory>
template< class T >
T* addressof( T& arg ) noexcept;
(1) (since C++11)
(constexpr since C++17)
template< class T >
const T* addressof( const T&& ) = delete;
(2) (since C++11)
1) Obtains the actual address of the object or function arg, even in presence of overloaded operator&.
2) Rvalue overload is deleted to prevent taking the address of const rvalues.

The expression std::addressof(e) is a constant subexpression, if e is an lvalue constant subexpression.

(since C++17)

[edit] Parameters

arg - lvalue object or function

[edit] Return value

Pointer to arg.

[edit] Possible implementation

The implementation below is not constexpr, because reinterpret_cast is not usable in a constant expression. Compiler support is needed (see below).

template<class T>
typename std::enable_if <std::is_object <T>::value, T*>::type addressof(T& arg) noexcept
{
 return reinterpret_cast<T*>(
 &const_cast<char&>(
 reinterpret_cast<const volatile char&>(arg)));
}
 
template<class T>
typename std::enable_if <!std::is_object <T>::value, T*>::type addressof(T& arg) noexcept
{
 return &arg;
}

Correct implementation of this function requires compiler support: GNU libstdc++, LLVM libc++, Microsoft STL.

[edit] Notes

Feature-test macro Value Std Feature
__cpp_lib_addressof_constexpr 201603L (C++17) constexpr std::addressof

constexpr for addressof is added by LWG2296, and MSVC STL applies the change to C++14 mode as a defect report.

There are some weird cases where use of built-in operator& is ill-formed due to argument-dependent lookup even if it is not overloaded, and std::addressof can be used instead.

template<class T>
struct holder { T t; };
 
struct incomp;
 
int main()
{
 holder<holder<incomp>*> x{};
 // &x; // error: argument-dependent lookup attempts to instantiate holder<incomp>
 std::addressof(x); // OK
}

[edit] Example

operator& may be overloaded for a pointer wrapper class to obtain a pointer to pointer:

Run this code
#include <iostream>
#include <memory>
 
template<class T>
struct Ptr
{
 T* pad; // add pad to show difference between 'this' and 'data'
 T* data;
 Ptr(T* arg) : pad(nullptr), data(arg)
 {
 std::cout << "Ctor this = " << this << '\n';
 }
 
 ~Ptr() { delete data; }
 T** operator&() { return &data; }
};
 
template<class T>
void f(Ptr<T>* p)
{
 std::cout << "Ptr overload called with p = " << p << '\n';
}
 
void f(int** p)
{
 std::cout << "int** overload called with p = " << p << '\n';
}
 
int main()
{
 Ptr<int> p(new int(42));
 f(&p); // calls int** overload
 f(std::addressof(p)); // calls Ptr<int>* overload, (= this)
}

Possible output:

Ctor this = 0x7fff59ae6e88
int** overload called with p = 0x7fff59ae6e90
Ptr overload called with p = 0x7fff59ae6e88

[edit] Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 2598 C++11 std::addressof<const T> could take address of rvalues disallowed by a deleted overload

[edit] See also

the default allocator
(class template) [edit]
[static]
obtains a dereferenceable pointer to its argument
(public static member function of std::pointer_traits<Ptr>) [edit]

AltStyle によって変換されたページ (->オリジナル) /