Jump to content
Wikipedia The Free Encyclopedia

Savage's subjective expected utility model

From Wikipedia, the free encyclopedia

In decision theory, Savage's subjective expected utility model (also known as Savage's framework, Savage's axioms, or Savage's representation theorem) is a formalization of subjective expected utility (SEU) developed by Leonard J. Savage in his 1954 book The Foundations of Statistics,[1] based on previous work by Ramsey,[2] von Neumann [3] and de Finetti.[4]

Savage's model concerns with deriving a subjective probability distribution and a utility function such that an agent's choice under uncertainty can be represented via expected-utility maximization. His contributions to the theory of SEU consist of formalizing a framework under which such problem is well-posed, and deriving conditions for its positive solution.

Primitives and problem

[edit ]

Savage's framework posits the following primitives to represent an agent's choice under uncertainty:[1]

  • A set of states of the world Ω {\displaystyle \Omega } {\displaystyle \Omega }, of which only one ω Ω {\displaystyle \omega \in \Omega } {\displaystyle \omega \in \Omega } is true. The agent does not know the true ω {\displaystyle \omega } {\displaystyle \omega }, so Ω {\displaystyle \Omega } {\displaystyle \Omega } represents something about which the agent is uncertain.
  • A set of consequences X {\displaystyle X} {\displaystyle X}: consequences are the objects from which the agent derives utility.
  • A set of acts F {\displaystyle F} {\displaystyle F}: acts are functions f : Ω X {\displaystyle f:\Omega \rightarrow X} {\displaystyle f:\Omega \rightarrow X} which map unknown states of the world ω Ω {\displaystyle \omega \in \Omega } {\displaystyle \omega \in \Omega } to tangible consequences x X {\displaystyle x\in X} {\displaystyle x\in X}.
  • A preference relation {\displaystyle \succsim } {\displaystyle \succsim } over acts in F {\displaystyle F} {\displaystyle F}: we write f g {\displaystyle f\succsim g} {\displaystyle f\succsim g} to represent the scenario where, when only able to choose between f , g F {\displaystyle f,g\in F} {\displaystyle f,g\in F}, the agent (weakly) prefers to choose act f {\displaystyle f} {\displaystyle f}. The strict preference f g {\displaystyle f\succ g} {\displaystyle f\succ g} means that f g {\displaystyle f\succsim g} {\displaystyle f\succsim g} but it does not hold that g f {\displaystyle g\succsim f} {\displaystyle g\succsim f}.

The model thus deals with conditions over the primitives ( Ω , X , F , ) {\displaystyle (\Omega ,X,F,\succsim )} {\displaystyle (\Omega ,X,F,\succsim )}—in particular, over preferences {\displaystyle \succsim } {\displaystyle \succsim }—such that one can represent the agent's preferences via expected-utility with respect to some subjective probability over the states Ω {\displaystyle \Omega } {\displaystyle \Omega }: i.e., there exists a subjective probability distribution p Δ ( Ω ) {\displaystyle p\in \Delta (\Omega )} {\displaystyle p\in \Delta (\Omega )} and a utility function u : X R {\displaystyle u:X\rightarrow \mathbb {R} } {\displaystyle u:X\rightarrow \mathbb {R} } such that

f g E ω p [ u ( f ( ω ) ) ] E ω p [ u ( g ( ω ) ) ] , {\displaystyle f\succsim g\iff \mathop {\mathbb {E} } _{\omega \sim p}[u(f(\omega ))]\geq \mathop {\mathbb {E} } _{\omega \sim p}[u(g(\omega ))],} {\displaystyle f\succsim g\iff \mathop {\mathbb {E} } _{\omega \sim p}[u(f(\omega ))]\geq \mathop {\mathbb {E} } _{\omega \sim p}[u(g(\omega ))],}

where E ω p [ u ( f ( ω ) ) ] := Ω u ( f ( ω ) ) d p ( ω ) {\displaystyle \mathop {\mathbb {E} } _{\omega \sim p}[u(f(\omega ))]:=\int _{\Omega }u(f(\omega )){\text{d}}p(\omega )} {\displaystyle \mathop {\mathbb {E} } _{\omega \sim p}[u(f(\omega ))]:=\int _{\Omega }u(f(\omega )){\text{d}}p(\omega )}.

The idea of the problem is to find conditions under which the agent can be thought of choosing among acts f F {\displaystyle f\in F} {\displaystyle f\in F} as if he considered only 1) his subjective probability of each state ω Ω {\displaystyle \omega \in \Omega } {\displaystyle \omega \in \Omega } and 2) the utility he derives from consequence f ( ω ) {\displaystyle f(\omega )} {\displaystyle f(\omega )} given at each state.

Axioms

[edit ]

Savage posits the following axioms regarding {\displaystyle \succsim } {\displaystyle \succsim }:[1] [5]

  • P1 (Preference relation) : the relation {\displaystyle \succsim } {\displaystyle \succsim } is complete (for all f , g F {\displaystyle f,g\in F} {\displaystyle f,g\in F}, it's true that f g {\displaystyle f\succsim g} {\displaystyle f\succsim g} or g f {\displaystyle g\succsim f} {\displaystyle g\succsim f}) and transitive.
  • P2 (Sure-thing Principle)[nb 1] : for any acts f , g F {\displaystyle f,g\in F} {\displaystyle f,g\in F}, let f E g {\displaystyle f_{E}g} {\displaystyle f_{E}g} be the act that gives consequence f ( ω ) {\displaystyle f(\omega )} {\displaystyle f(\omega )} if ω E {\displaystyle \omega \in E} {\displaystyle \omega \in E} and g ( ω ) {\displaystyle g(\omega )} {\displaystyle g(\omega )} if ω E {\displaystyle \omega \notin E} {\displaystyle \omega \notin E}. Then for any event E Ω {\displaystyle E\subset \Omega } {\displaystyle E\subset \Omega } and any acts f , g , h , h F {\displaystyle f,g,h,h'\in F} {\displaystyle f,g,h,h'\in F}, the following holds:
f E h g E h f E h g E h . {\displaystyle f_{E}h\succsim g_{E}h\implies f_{E}h'\succsim g_{E}h'.} {\displaystyle f_{E}h\succsim g_{E}h\implies f_{E}h'\succsim g_{E}h'.}

In words: if you prefer act f {\displaystyle f} {\displaystyle f} to act g {\displaystyle g} {\displaystyle g} whether the event E {\displaystyle E} {\displaystyle E} happens or not, then it does not matter the consequence when E {\displaystyle E} {\displaystyle E} does not happen.

An event E Ω {\displaystyle E\subset \Omega } {\displaystyle E\subset \Omega } is nonnull if the agent has preferences over consequences when E {\displaystyle E} {\displaystyle E} happens: i.e., there exist f , g , h F {\displaystyle f,g,h\in F} {\displaystyle f,g,h\in F} such that f E h g E h {\displaystyle f_{E}h\succ g_{E}h} {\displaystyle f_{E}h\succ g_{E}h}.

  • P3 (Monotonicity in consequences): let f x {\displaystyle f\equiv x} {\displaystyle f\equiv x} and g y {\displaystyle g\equiv y} {\displaystyle g\equiv y} be constant acts. Then f g {\displaystyle f\succsim g} {\displaystyle f\succsim g} if and only if f E h g E h {\displaystyle f_{E}h\succsim g_{E}h} {\displaystyle f_{E}h\succsim g_{E}h} for all nonnull events E {\displaystyle E} {\displaystyle E}.
  • P4 (Independence of beliefs from tastes): for all events E , E Ω {\displaystyle E,E'\subset \Omega } {\displaystyle E,E'\subset \Omega } and constant acts f x {\displaystyle f\equiv x} {\displaystyle f\equiv x}, g y {\displaystyle g\equiv y} {\displaystyle g\equiv y}, f x {\displaystyle f'\equiv x'} {\displaystyle f'\equiv x'}, g y {\displaystyle g'\equiv y'} {\displaystyle g'\equiv y'} such that f g {\displaystyle f\succ g} {\displaystyle f\succ g} and f g {\displaystyle f'\succ g'} {\displaystyle f'\succ g'}, it holds that
f E g f E g f E g f E g {\displaystyle f_{E}g\succsim f_{E'}g\iff f'_{E}g'\succsim f'_{E'}g'} {\displaystyle f_{E}g\succsim f_{E'}g\iff f'_{E}g'\succsim f'_{E'}g'}.
  • P5 (Non-triviality): there exist acts f , f F {\displaystyle f,f'\in F} {\displaystyle f,f'\in F} such that f f {\displaystyle f\succ f'} {\displaystyle f\succ f'}.
  • P6 (Continuity in events): For all acts f , g , h F {\displaystyle f,g,h\in F} {\displaystyle f,g,h\in F} such that f g {\displaystyle f\succ g} {\displaystyle f\succ g}, there is a finite partition ( E i ) i = 1 n {\displaystyle (E_{i})_{i=1}^{n}} {\displaystyle (E_{i})_{i=1}^{n}} of Ω {\displaystyle \Omega } {\displaystyle \Omega } such that f g E i h {\displaystyle f\succ g_{E_{i}}h} {\displaystyle f\succ g_{E_{i}}h} and h E i f g {\displaystyle h_{E_{i}}f\succ g} {\displaystyle h_{E_{i}}f\succ g} for all i n {\displaystyle i\leq n} {\displaystyle i\leq n}.

The final axiom is more technical, and of importance only when X {\displaystyle X} {\displaystyle X} is infinite. For any E Ω {\displaystyle E\subset \Omega } {\displaystyle E\subset \Omega }, let E {\displaystyle \succsim _{E}} {\displaystyle \succsim _{E}} be the restriction of {\displaystyle \succsim } {\displaystyle \succsim } to E {\displaystyle E} {\displaystyle E}. For any act f F {\displaystyle f\in F} {\displaystyle f\in F} and state ω Ω {\displaystyle \omega \in \Omega } {\displaystyle \omega \in \Omega }, let f ω f ( ω ) {\displaystyle f_{\omega }\equiv f(\omega )} {\displaystyle f_{\omega }\equiv f(\omega )} be the constant act with value f ( ω ) {\displaystyle f(\omega )} {\displaystyle f(\omega )}.

  • P7: For all acts f , g , F {\displaystyle f,g,\in F} {\displaystyle f,g,\in F} and events E Ω {\displaystyle E\subset \Omega } {\displaystyle E\subset \Omega }, we have
f E g ω   ω E f E g {\displaystyle f\succsim _{E}g_{\omega }{\text{ }}\forall \omega \in E\implies f\succsim _{E}g} {\displaystyle f\succsim _{E}g_{\omega }{\text{ }}\forall \omega \in E\implies f\succsim _{E}g},
f ω E g   ω E f E g {\displaystyle f_{\omega }\succsim _{E}g{\text{ }}\forall \omega \in E\implies f\succsim _{E}g} {\displaystyle f_{\omega }\succsim _{E}g{\text{ }}\forall \omega \in E\implies f\succsim _{E}g}.

Savage's representation theorem

[edit ]

Theorem: Given an environment ( Ω , X , F , ) {\displaystyle (\Omega ,X,F,\succsim )} {\displaystyle (\Omega ,X,F,\succsim )} as defined above with X {\displaystyle X} {\displaystyle X} finite, the following are equivalent:

1) {\displaystyle \succsim } {\displaystyle \succsim } satisfies axioms P1-P6.

2) there exists a non-atomic, finitely additive probability measure p Δ ( Ω ) {\displaystyle p\in \Delta (\Omega )} {\displaystyle p\in \Delta (\Omega )} defined on 2 Ω {\displaystyle 2^{\Omega }} {\displaystyle 2^{\Omega }} and a nonconstant function u : X R {\displaystyle u:X\rightarrow \mathbb {R} } {\displaystyle u:X\rightarrow \mathbb {R} } such that, for all f , g F {\displaystyle f,g\in F} {\displaystyle f,g\in F},

f g E ω p [ u ( f ( ω ) ) ] E ω p [ u ( g ( ω ) ) ] . {\displaystyle f\succsim g\iff \mathop {\mathbb {E} } _{\omega \sim p}[u(f(\omega ))]\geq \mathop {\mathbb {E} } _{\omega \sim p}[u(g(\omega ))].} {\displaystyle f\succsim g\iff \mathop {\mathbb {E} } _{\omega \sim p}[u(f(\omega ))]\geq \mathop {\mathbb {E} } _{\omega \sim p}[u(g(\omega ))].}

For infinite X {\displaystyle X} {\displaystyle X}, one needs axiom P7. This inclusion makes P3 redundant.[8] Furthermore, in both cases, the probability measure p {\displaystyle p} {\displaystyle p} is unique and the function u {\displaystyle u} {\displaystyle u} is unique up to positive linear transformations.[1] [6]

See also

[edit ]

Notes

[edit ]
  1. ^ Referring to axiom P2 as the sure-thing principle is the most common usage of the term,[6] but Savage originally referred to the concept as P2 in conjunction with P3 and P7,[1] and some authors refer to it just as P7.[7]

References

[edit ]
  1. ^ a b c d e Savage, Leonard J. (1954). The Foundations of Statistics. New York: John Wiley & Sons.
  2. ^ Ramsey, Frank (1931). "Chapter 4: Truth and Probability". In Braithwaite, R. B. (ed.). The Foundations of Mathematics and Other Logical Essays. London: Kegan Paul, Trench, Trubner, & Co.
  3. ^ von Neumann, John; Morgenstern, Oskar (1944). Theory of Games and Economic Behavior. Princeton University Press. ISBN 978-0691130613. {{cite book}}: ISBN / Date incompatibility (help)
  4. ^ de Finetti, Bruno (1937). "La prévision : ses lois logiques, ses sources subjectives". Annales de l'Institut Henri Poincaré. 7 (1): 1–68.
  5. ^ Abdellaoui, Mohammed; Wakker, Peter (2020). "Savage for dummies and experts". Journal of Economic Theory. 186 (C). doi:10.1016/j.jet.2020.104991. hdl:1765/123833 .
  6. ^ a b Gilboa, Itzhak (2009). Theory of Decision under Uncertainty. New York: Cambridge University Press. ISBN 978-0521741231.
  7. ^ Kreps, David (1988). Notes on the Theory of Choice. Westview Press. ISBN 978-0813375533.
  8. ^ Hartmann, Lorenz. "Savage's P3 is Redundant." Econometrica, vol. 88, .no 1, Econometric Society, 2020, pp. 203-205, https://doi.org/10.3982/ECTA17428
Core concepts
Decision models
Decision analysis tools
Paradoxes and biases
Uncertainty and risk
Related fields
Key people

AltStyle によって変換されたページ (->オリジナル) /