Jump to content
Wikipedia The Free Encyclopedia

Material nonimplication

From Wikipedia, the free encyclopedia
Logical connective
Venn diagram of P Q {\displaystyle P\nrightarrow Q} {\displaystyle P\nrightarrow Q}

Material nonimplication or abjunction (from Latin ab 'away' and junctio 'to join') is a term referring to a logic operation used in generic circuits and Boolean algebra.[1] It is the negation of material implication. That is to say that for any two propositions P {\displaystyle P} {\displaystyle P} and Q {\displaystyle Q} {\displaystyle Q}, the material nonimplication from P {\displaystyle P} {\displaystyle P} to Q {\displaystyle Q} {\displaystyle Q} is true if and only if the negation of the material implication from P {\displaystyle P} {\displaystyle P} to Q {\displaystyle Q} {\displaystyle Q} is true. This is more naturally stated as that the material nonimplication from P {\displaystyle P} {\displaystyle P} to Q {\displaystyle Q} {\displaystyle Q} is true only if P {\displaystyle P} {\displaystyle P} is true and Q {\displaystyle Q} {\displaystyle Q} is false.

It may be written using logical notation as P Q {\displaystyle P\nrightarrow Q} {\displaystyle P\nrightarrow Q}, P Q {\displaystyle P\not \supset Q} {\displaystyle P\not \supset Q}, or "Lpq" (in Bocheński notation), and is logically equivalent to ¬ ( P Q ) {\displaystyle \neg (P\rightarrow Q)} {\displaystyle \neg (P\rightarrow Q)}, and P ¬ Q {\displaystyle P\land \neg Q} {\displaystyle P\land \neg Q}.

Definition

[edit ]

Truth table

[edit ]
A {\displaystyle A} {\displaystyle A} B {\displaystyle B} {\displaystyle B} A B {\displaystyle A\nrightarrow B} {\displaystyle A\nrightarrow B}
FFF
FTF
TFT
TTF

Logical equivalences

[edit ]

Material nonimplication may be defined as the negation of material implication.

P Q {\displaystyle P\nrightarrow Q} {\displaystyle P\nrightarrow Q}    {\displaystyle \Leftrightarrow } {\displaystyle \Leftrightarrow }   ¬ ( P Q ) {\displaystyle \neg (P\rightarrow Q)} {\displaystyle \neg (P\rightarrow Q)}
   {\displaystyle \Leftrightarrow } {\displaystyle \Leftrightarrow }   ¬ {\displaystyle \neg } {\displaystyle \neg }

In classical logic, it is also equivalent to the negation of the disjunction of ¬ P {\displaystyle \neg P} {\displaystyle \neg P} and Q {\displaystyle Q} {\displaystyle Q}, and also the conjunction of P {\displaystyle P} {\displaystyle P} and ¬ Q {\displaystyle \neg Q} {\displaystyle \neg Q}

P Q {\displaystyle P\nrightarrow Q} {\displaystyle P\nrightarrow Q}    {\displaystyle \Leftrightarrow } {\displaystyle \Leftrightarrow }   ¬ ( {\displaystyle \neg (} {\displaystyle \neg (} ¬ P {\displaystyle \neg P} {\displaystyle \neg P} {\displaystyle \lor } {\displaystyle \lor } Q ) {\displaystyle Q)} {\displaystyle Q)}    {\displaystyle \Leftrightarrow } {\displaystyle \Leftrightarrow }   P {\displaystyle P} {\displaystyle P} {\displaystyle \land } {\displaystyle \land } ¬ Q {\displaystyle \neg Q} {\displaystyle \neg Q}
   {\displaystyle \Leftrightarrow } {\displaystyle \Leftrightarrow }   ¬ ( {\displaystyle \neg (} {\displaystyle \neg (} {\displaystyle \lor } {\displaystyle \lor } ) {\displaystyle )} {\displaystyle )}    {\displaystyle \Leftrightarrow } {\displaystyle \Leftrightarrow }   {\displaystyle \land } {\displaystyle \land }

Properties

[edit ]

falsehood-preserving: The interpretation under which all variables are assigned a truth value of "false" produces a truth value of "false" as a result of material nonimplication.

Symbol

[edit ]

The symbol for material nonimplication is simply a crossed-out material implication symbol. Its Unicode symbol is 219B16 (8603 decimal): ↛.

Natural language

[edit ]

Grammatical

[edit ]

"p minus q."

"p without q."

Rhetorical

[edit ]

"p but not q."

"q is false, in spite of p."

Computer science

[edit ]

Bitwise operation: A & ~B. This is usually called "bit clear" (BIC) or "and not" (ANDN).

Logical operation: A && !B.

See also

[edit ]

References

[edit ]
  1. ^ Berco, Dan; Ang, Diing Shenp; Kalaga, Pranav Sairam (2020). "Programmable Photoelectric Memristor Gates for In Situ Image Compression". Advanced Intelligent Systems. 2 (9): 5. doi:10.1002/aisy.202000079 .
[edit ]


Stub icon

This mathematical logic-related article is a stub. You can help Wikipedia by expanding it.

Stub icon

This logic-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /