Jump to content
Wikipedia The Free Encyclopedia

LB-space

From Wikipedia, the free encyclopedia

In mathematics, an LB-space, also written (LB)-space, is a topological vector space X {\displaystyle X} {\displaystyle X} that is a locally convex inductive limit of a countable inductive system ( X n , i n m ) {\displaystyle (X_{n},i_{nm})} {\displaystyle (X_{n},i_{nm})} of Banach spaces. This means that X {\displaystyle X} {\displaystyle X} is a direct limit of a direct system ( X n , i n m ) {\displaystyle \left(X_{n},i_{nm}\right)} {\displaystyle \left(X_{n},i_{nm}\right)} in the category of locally convex topological vector spaces and each X n {\displaystyle X_{n}} {\displaystyle X_{n}} is a Banach space.

If each of the bonding maps i n m {\displaystyle i_{nm}} {\displaystyle i_{nm}} is an embedding of TVSs then the LB-space is called a strict LB-space. This means that the topology induced on X n {\displaystyle X_{n}} {\displaystyle X_{n}} by X n + 1 {\displaystyle X_{n+1}} {\displaystyle X_{n+1}} is identical to the original topology on X n . {\displaystyle X_{n}.} {\displaystyle X_{n}.}[1] Some authors (e.g. Schaefer) define the term "LB-space" to mean "strict LB-space."

Definition

[edit ]

The topology on X {\displaystyle X} {\displaystyle X} can be described by specifying that an absolutely convex subset U {\displaystyle U} {\displaystyle U} is a neighborhood of 0 {\displaystyle 0} {\displaystyle 0} if and only if U X n {\displaystyle U\cap X_{n}} {\displaystyle U\cap X_{n}} is an absolutely convex neighborhood of 0 {\displaystyle 0} {\displaystyle 0} in X n {\displaystyle X_{n}} {\displaystyle X_{n}} for every n . {\displaystyle n.} {\displaystyle n.}

Properties

[edit ]

A strict LB-space is complete,[2] barrelled,[2] and bornological [2] (and thus ultrabornological).

Examples

[edit ]

If D {\displaystyle D} {\displaystyle D} is a locally compact topological space that is countable at infinity (that is, it is equal to a countable union of compact subspaces) then the space C c ( D ) {\displaystyle C_{c}(D)} {\displaystyle C_{c}(D)} of all continuous, complex-valued functions on D {\displaystyle D} {\displaystyle D} with compact support is a strict LB-space.[3] For any compact subset K D , {\displaystyle K\subseteq D,} {\displaystyle K\subseteq D,} let C c ( K ) {\displaystyle C_{c}(K)} {\displaystyle C_{c}(K)} denote the Banach space of complex-valued functions that are supported by K {\displaystyle K} {\displaystyle K} with the uniform norm and order the family of compact subsets of D {\displaystyle D} {\displaystyle D} by inclusion.[3]

Final topology on the direct limit of finite-dimensional Euclidean spaces

Let

R   :=   { ( x 1 , x 2 , ) R N   :    all but finitely many  x i  are equal to 0  } , {\displaystyle {\begin{alignedat}{4}\mathbb {R} ^{\infty }~&:=~\left\{\left(x_{1},x_{2},\ldots \right)\in \mathbb {R} ^{\mathbb {N} }~:~{\text{ all but finitely many }}x_{i}{\text{ are equal to 0 }}\right\},\end{alignedat}}} {\displaystyle {\begin{alignedat}{4}\mathbb {R} ^{\infty }~&:=~\left\{\left(x_{1},x_{2},\ldots \right)\in \mathbb {R} ^{\mathbb {N} }~:~{\text{ all but finitely many }}x_{i}{\text{ are equal to 0 }}\right\},\end{alignedat}}}

denote the space of finite sequences , where R N {\displaystyle \mathbb {R} ^{\mathbb {N} }} {\displaystyle \mathbb {R} ^{\mathbb {N} }} denotes the space of all real sequences. For every natural number n N , {\displaystyle n\in \mathbb {N} ,} {\displaystyle n\in \mathbb {N} ,} let R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}} denote the usual Euclidean space endowed with the Euclidean topology and let In R n : R n R {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \mathbb {R} ^{\infty }} {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \mathbb {R} ^{\infty }} denote the canonical inclusion defined by In R n ( x 1 , , x n ) := ( x 1 , , x n , 0 , 0 , ) {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{n}\right):=\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)} {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{n}\right):=\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)} so that its image is

Im ( In R n ) = { ( x 1 , , x n , 0 , 0 , )   :   x 1 , , x n R } = R n × { ( 0 , 0 , ) } {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)=\left\{\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)~:~x_{1},\ldots ,x_{n}\in \mathbb {R} \right\}=\mathbb {R} ^{n}\times \left\{(0,0,\ldots )\right\}} {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)=\left\{\left(x_{1},\ldots ,x_{n},0,0,\ldots \right)~:~x_{1},\ldots ,x_{n}\in \mathbb {R} \right\}=\mathbb {R} ^{n}\times \left\{(0,0,\ldots )\right\}}

and consequently,

R = n N Im ( In R n ) . {\displaystyle \mathbb {R} ^{\infty }=\bigcup _{n\in \mathbb {N} }\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).} {\displaystyle \mathbb {R} ^{\infty }=\bigcup _{n\in \mathbb {N} }\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).}

Endow the set R {\displaystyle \mathbb {R} ^{\infty }} {\displaystyle \mathbb {R} ^{\infty }} with the final topology τ {\displaystyle \tau ^{\infty }} {\displaystyle \tau ^{\infty }} induced by the family F := { In R n   :   n N } {\displaystyle {\mathcal {F}}:=\left\{\;\operatorname {In} _{\mathbb {R} ^{n}}~:~n\in \mathbb {N} \;\right\}} {\displaystyle {\mathcal {F}}:=\left\{\;\operatorname {In} _{\mathbb {R} ^{n}}~:~n\in \mathbb {N} \;\right\}} of all canonical inclusions. With this topology, R {\displaystyle \mathbb {R} ^{\infty }} {\displaystyle \mathbb {R} ^{\infty }} becomes a complete Hausdorff locally convex sequential topological vector space that is not a Fréchet–Urysohn space. The topology τ {\displaystyle \tau ^{\infty }} {\displaystyle \tau ^{\infty }} is strictly finer than the subspace topology induced on R {\displaystyle \mathbb {R} ^{\infty }} {\displaystyle \mathbb {R} ^{\infty }} by R N , {\displaystyle \mathbb {R} ^{\mathbb {N} },} {\displaystyle \mathbb {R} ^{\mathbb {N} },} where R N {\displaystyle \mathbb {R} ^{\mathbb {N} }} {\displaystyle \mathbb {R} ^{\mathbb {N} }} is endowed with its usual product topology. Endow the image Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} with the final topology induced on it by the bijection In R n : R n Im ( In R n ) ; {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right);} {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}:\mathbb {R} ^{n}\to \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right);} that is, it is endowed with the Euclidean topology transferred to it from R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}} via In R n . {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}.} {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}.} This topology on Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} is equal to the subspace topology induced on it by ( R , τ ) . {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right).} {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right).} A subset S R {\displaystyle S\subseteq \mathbb {R} ^{\infty }} {\displaystyle S\subseteq \mathbb {R} ^{\infty }} is open (resp. closed) in ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} if and only if for every n N , {\displaystyle n\in \mathbb {N} ,} {\displaystyle n\in \mathbb {N} ,} the set S Im ( In R n ) {\displaystyle S\cap \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} {\displaystyle S\cap \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} is an open (resp. closed) subset of Im ( In R n ) . {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).} {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).} The topology τ {\displaystyle \tau ^{\infty }} {\displaystyle \tau ^{\infty }} is coherent with family of subspaces S := { Im ( In R n )   :   n N } . {\displaystyle \mathbb {S} :=\left\{\;\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)~:~n\in \mathbb {N} \;\right\}.} {\displaystyle \mathbb {S} :=\left\{\;\operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)~:~n\in \mathbb {N} \;\right\}.} This makes ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} into an LB-space. Consequently, if v R {\displaystyle v\in \mathbb {R} ^{\infty }} {\displaystyle v\in \mathbb {R} ^{\infty }} and v {\displaystyle v_{\bullet }} {\displaystyle v_{\bullet }} is a sequence in R {\displaystyle \mathbb {R} ^{\infty }} {\displaystyle \mathbb {R} ^{\infty }} then v v {\displaystyle v_{\bullet }\to v} {\displaystyle v_{\bullet }\to v} in ( R , τ ) {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} {\displaystyle \left(\mathbb {R} ^{\infty },\tau ^{\infty }\right)} if and only if there exists some n N {\displaystyle n\in \mathbb {N} } {\displaystyle n\in \mathbb {N} } such that both v {\displaystyle v} {\displaystyle v} and v {\displaystyle v_{\bullet }} {\displaystyle v_{\bullet }} are contained in Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} and v v {\displaystyle v_{\bullet }\to v} {\displaystyle v_{\bullet }\to v} in Im ( In R n ) . {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).} {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right).}

Often, for every n N , {\displaystyle n\in \mathbb {N} ,} {\displaystyle n\in \mathbb {N} ,} the canonical inclusion In R n {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}} {\displaystyle \operatorname {In} _{\mathbb {R} ^{n}}} is used to identify R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}} with its image Im ( In R n ) {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} {\displaystyle \operatorname {Im} \left(\operatorname {In} _{\mathbb {R} ^{n}}\right)} in R ; {\displaystyle \mathbb {R} ^{\infty };} {\displaystyle \mathbb {R} ^{\infty };} explicitly, the elements ( x 1 , , x n ) R n {\displaystyle \left(x_{1},\ldots ,x_{n}\right)\in \mathbb {R} ^{n}} {\displaystyle \left(x_{1},\ldots ,x_{n}\right)\in \mathbb {R} ^{n}} and ( x 1 , , x n , 0 , 0 , 0 , ) {\displaystyle \left(x_{1},\ldots ,x_{n},0,0,0,\ldots \right)} {\displaystyle \left(x_{1},\ldots ,x_{n},0,0,0,\ldots \right)} are identified together. Under this identification, ( ( R , τ ) , ( In R n ) n N ) {\displaystyle \left(\left(\mathbb {R} ^{\infty },\tau ^{\infty }\right),\left(\operatorname {In} _{\mathbb {R} ^{n}}\right)_{n\in \mathbb {N} }\right)} {\displaystyle \left(\left(\mathbb {R} ^{\infty },\tau ^{\infty }\right),\left(\operatorname {In} _{\mathbb {R} ^{n}}\right)_{n\in \mathbb {N} }\right)} becomes a direct limit of the direct system ( ( R n ) n N , ( In R m R n ) m n  in  N , N ) , {\displaystyle \left(\left(\mathbb {R} ^{n}\right)_{n\in \mathbb {N} },\left(\operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\right)_{m\leq n{\text{ in }}\mathbb {N} },\mathbb {N} \right),} {\displaystyle \left(\left(\mathbb {R} ^{n}\right)_{n\in \mathbb {N} },\left(\operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\right)_{m\leq n{\text{ in }}\mathbb {N} },\mathbb {N} \right),} where for every m n , {\displaystyle m\leq n,} {\displaystyle m\leq n,} the map In R m R n : R m R n {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}:\mathbb {R} ^{m}\to \mathbb {R} ^{n}} {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}:\mathbb {R} ^{m}\to \mathbb {R} ^{n}} is the canonical inclusion defined by In R m R n ( x 1 , , x m ) := ( x 1 , , x m , 0 , , 0 ) , {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{m}\right):=\left(x_{1},\ldots ,x_{m},0,\ldots ,0\right),} {\displaystyle \operatorname {In} _{\mathbb {R} ^{m}}^{\mathbb {R} ^{n}}\left(x_{1},\ldots ,x_{m}\right):=\left(x_{1},\ldots ,x_{m},0,\ldots ,0\right),} where there are n m {\displaystyle n-m} {\displaystyle n-m} trailing zeros.

Counter-examples

[edit ]

There exists a bornological LB-space whose strong bidual is not bornological.[4] There exists an LB-space that is not quasi-complete.[4]

See also

[edit ]
  • DF-space
  • Direct limit – Special case of colimit in category theory
  • Final topology – Finest topology making some functions continuous
  • F-space – Topological vector space with a complete translation-invariant metric
  • LF-space – Topological vector space

Citations

[edit ]
  1. ^ Schaefer & Wolff 1999, pp. 55–61.
  2. ^ a b c Schaefer & Wolff 1999, pp. 60–63.
  3. ^ a b Schaefer & Wolff 1999, pp. 57–58.
  4. ^ a b Khaleelulla 1982, pp. 28–63.

References

[edit ]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs

AltStyle によって変換されたページ (->オリジナル) /