Anderson–Kadec theorem
In mathematics, in the areas of topology and functional analysis, the Anderson–Kadec theorem states[1] that any two infinite-dimensional, separable Banach spaces, or, more generally, Fréchet spaces, are homeomorphic as topological spaces. The theorem was proved by Mikhail Kadec (1966) and Richard Davis Anderson.
Statement
[edit ]Every infinite-dimensional, separable Fréchet space is homeomorphic to {\displaystyle \mathbb {R} ^{\mathbb {N} },} the Cartesian product of countably many copies of the real line {\displaystyle \mathbb {R} .}
Preliminaries
[edit ]Kadec norm: A norm {\displaystyle \|,円\cdot ,円\|} on a normed linear space {\displaystyle X} is called a Kadec norm with respect to a total subset {\displaystyle A\subseteq X^{*}} of the dual space {\displaystyle X^{*}} if for each sequence {\displaystyle x_{n}\in X} the following condition is satisfied:
- If {\displaystyle \lim _{n\to \infty }x^{*}\left(x_{n}\right)=x^{*}(x_{0})} for {\displaystyle x^{*}\in A} and {\displaystyle \lim _{n\to \infty }\left\|x_{n}\right\|=\left\|x_{0}\right\|,} then {\displaystyle \lim _{n\to \infty }\left\|x_{n}-x_{0}\right\|=0.}
Eidelheit theorem: A Fréchet space {\displaystyle E} is either isomorphic to a Banach space, or has a quotient space isomorphic to {\displaystyle \mathbb {R} ^{\mathbb {N} }.}
Kadec renorming theorem: Every separable Banach space {\displaystyle X} admits a Kadec norm with respect to a countable total subset {\displaystyle A\subseteq X^{*}} of {\displaystyle X^{*}.} The new norm is equivalent to the original norm {\displaystyle \|,円\cdot ,円\|} of {\displaystyle X.} The set {\displaystyle A} can be taken to be any weak-star dense countable subset of the unit ball of {\displaystyle X^{*}}
Sketch of the proof
[edit ]In the argument below {\displaystyle E} denotes an infinite-dimensional separable Fréchet space and {\displaystyle \simeq } the relation of topological equivalence (existence of homeomorphism).
A starting point of the proof of the Anderson–Kadec theorem is Kadec's proof that any infinite-dimensional separable Banach space is homeomorphic to {\displaystyle \mathbb {R} ^{\mathbb {N} }.}
From Eidelheit theorem, it is enough to consider Fréchet space that are not isomorphic to a Banach space. In that case there they have a quotient that is isomorphic to {\displaystyle \mathbb {R} ^{\mathbb {N} }.} A result of Bartle-Graves-Michael proves that then {\displaystyle E\simeq Y\times \mathbb {R} ^{\mathbb {N} }} for some Fréchet space {\displaystyle Y.}
On the other hand, {\displaystyle E} is a closed subspace of a countable infinite product of separable Banach spaces {\textstyle X=\prod _{n=1}^{\infty }X_{i}} of separable Banach spaces. The same result of Bartle-Graves-Michael applied to {\displaystyle X} gives a homeomorphism {\displaystyle X\simeq E\times Z} for some Fréchet space {\displaystyle Z.} From Kadec's result the countable product of infinite-dimensional separable Banach spaces {\displaystyle X} is homeomorphic to {\displaystyle \mathbb {R} ^{\mathbb {N} }.}
The proof of Anderson–Kadec theorem consists of the sequence of equivalences {\displaystyle {\begin{aligned}\mathbb {R} ^{\mathbb {N} }&\simeq (E\times Z)^{\mathbb {N} }\\&\simeq E^{\mathbb {N} }\times Z^{\mathbb {N} }\\&\simeq E\times E^{\mathbb {N} }\times Z^{\mathbb {N} }\\&\simeq E\times \mathbb {R} ^{\mathbb {N} }\\&\simeq Y\times \mathbb {R} ^{\mathbb {N} }\times \mathbb {R} ^{\mathbb {N} }\\&\simeq Y\times \mathbb {R} ^{\mathbb {N} }\\&\simeq E\end{aligned}}}
See also
[edit ]- Metrizable topological vector space – Topological vector space whose topology can be defined by a metric
Notes
[edit ]- ^ Bessaga & Pełczyński 1975, p. 189
References
[edit ]- Bessaga, C.; Pełczyński, A. (1975), Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne, Warszawa: Panstwowe wyd. naukowe.
- Torunczyk, H. (1981), Characterizing Hilbert Space Topology, Fundamenta Mathematicae, pp. 247–262.