Jump to content
Wikipedia The Free Encyclopedia

Inverse function rule

From Wikipedia, the free encyclopedia
Formula for the derivative of an inverse function
This article is about the computation of the derivative of an invertible function. For a condition on which a function is invertible, see Inverse function theorem.
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Inverse function rule" – news · newspapers · books · scholar · JSTOR
(January 2022) (Learn how and when to remove this message)
The thick blue curve and the thick red curve are inverse to each other. A thin curve is the derivative of the same colored thick curve. Inverse function rule:
f ( x ) = 1 ( f 1 ) ( f ( x ) ) {\displaystyle {\color {CornflowerBlue}{f'}}(x)={\frac {1}{{\color {Salmon}{(f^{-1})'}}({\color {Blue}{f}}(x))}}} {\displaystyle {\color {CornflowerBlue}{f'}}(x)={\frac {1}{{\color {Salmon}{(f^{-1})'}}({\color {Blue}{f}}(x))}}}

Example for arbitrary x 0 5.8 {\displaystyle x_{0}\approx 5.8} {\displaystyle x_{0}\approx 5.8}:
f ( x 0 ) = 1 4 {\displaystyle {\color {CornflowerBlue}{f'}}(x_{0})={\frac {1}{4}}} {\displaystyle {\color {CornflowerBlue}{f'}}(x_{0})={\frac {1}{4}}}
( f 1 ) ( f ( x 0 ) ) = 4   {\displaystyle {\color {Salmon}{(f^{-1})'}}({\color {Blue}{f}}(x_{0}))=4~} {\displaystyle {\color {Salmon}{(f^{-1})'}}({\color {Blue}{f}}(x_{0}))=4~}
Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t),円dt=f(b)-f(a)} {\displaystyle \int _{a}^{b}f'(t),円dt=f(b)-f(a)}

In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} {\displaystyle f} is denoted as f 1 {\displaystyle f^{-1}} {\displaystyle f^{-1}}, where f 1 ( y ) = x {\displaystyle f^{-1}(y)=x} {\displaystyle f^{-1}(y)=x} if and only if f ( x ) = y {\displaystyle f(x)=y} {\displaystyle f(x)=y}, then the inverse function rule is, in Lagrange's notation,

[ f 1 ] ( y ) = 1 f ( f 1 ( y ) ) {\displaystyle \left[f^{-1}\right]'(y)={\frac {1}{f'\left(f^{-1}(y)\right)}}} {\displaystyle \left[f^{-1}\right]'(y)={\frac {1}{f'\left(f^{-1}(y)\right)}}}.

This formula holds in general whenever f {\displaystyle f} {\displaystyle f} is continuous and injective on an interval I, with f {\displaystyle f} {\displaystyle f} being differentiable at f 1 ( y ) {\displaystyle f^{-1}(y)} {\displaystyle f^{-1}(y)}( I {\displaystyle \in I} {\displaystyle \in I}) and where f ( f 1 ( y ) ) 0 {\displaystyle f'(f^{-1}(y))\neq 0} {\displaystyle f'(f^{-1}(y))\neq 0}. The same formula is also equivalent to the expression

D [ f 1 ] = 1 ( D f ) ( f 1 ) , {\displaystyle {\mathcal {D}}\left[f^{-1}\right]={\frac {1}{({\mathcal {D}}f)\circ \left(f^{-1}\right)}},} {\displaystyle {\mathcal {D}}\left[f^{-1}\right]={\frac {1}{({\mathcal {D}}f)\circ \left(f^{-1}\right)}},}

where D {\displaystyle {\mathcal {D}}} {\displaystyle {\mathcal {D}}} denotes the unary derivative operator (on the space of functions) and {\displaystyle \circ } {\displaystyle \circ } denotes function composition.

Geometrically, a function and inverse function have graphs that are reflections, in the line y = x {\displaystyle y=x} {\displaystyle y=x}. This reflection operation turns the gradient of any line into its reciprocal.[1]

Assuming that f {\displaystyle f} {\displaystyle f} has an inverse in a neighbourhood of x {\displaystyle x} {\displaystyle x} and that its derivative at that point is non-zero, its inverse is guaranteed to be differentiable at x {\displaystyle x} {\displaystyle x} and have a derivative given by the above formula.

The inverse function rule may also be expressed in Leibniz's notation. As that notation suggests,

d x d y d y d x = 1. {\displaystyle {\frac {dx}{dy}},円\cdot ,円{\frac {dy}{dx}}=1.} {\displaystyle {\frac {dx}{dy}},円\cdot ,円{\frac {dy}{dx}}=1.}

This relation is obtained by differentiating the equation f 1 ( y ) = x {\displaystyle f^{-1}(y)=x} {\displaystyle f^{-1}(y)=x} in terms of x and applying the chain rule, yielding that:

d x d y d y d x = d x d x {\displaystyle {\frac {dx}{dy}},円\cdot ,円{\frac {dy}{dx}}={\frac {dx}{dx}}} {\displaystyle {\frac {dx}{dy}},円\cdot ,円{\frac {dy}{dx}}={\frac {dx}{dx}}}

considering that the derivative of x with respect to x is 1.

Derivation

[edit ]

Let f {\displaystyle f} {\displaystyle f} be an invertible (bijective) function, let x {\displaystyle x} {\displaystyle x} be in the domain of f {\displaystyle f} {\displaystyle f}, and let y = f ( x ) . {\displaystyle y=f(x).} {\displaystyle y=f(x).} Let g = f 1 . {\displaystyle g=f^{-1}.} {\displaystyle g=f^{-1}.} So, f ( g ( y ) ) = y . {\displaystyle f(g(y))=y.} {\displaystyle f(g(y))=y.} Derivating this equation with respect to y {\displaystyle y} {\displaystyle y}, and using the chain rule, one gets

f ( g ( y ) ) g ( y ) = 1. {\displaystyle f'(g(y))\cdot g'(y)=1.} {\displaystyle f'(g(y))\cdot g'(y)=1.}

That is,

g ( y ) = 1 f ( g ( y ) ) {\displaystyle g'(y)={\frac {1}{f'(g(y))}}} {\displaystyle g'(y)={\frac {1}{f'(g(y))}}}

or

( f 1 ) ( y ) = 1 f ( f 1 ( y ) ) . {\displaystyle (f^{-1})^{\prime }(y)={\frac {1}{f^{\prime }(f^{-1}(y))}}.} {\displaystyle (f^{-1})^{\prime }(y)={\frac {1}{f^{\prime }(f^{-1}(y))}}.}

Examples

[edit ]
  • y = x 2 {\displaystyle y=x^{2}} {\displaystyle y=x^{2}} (for positive x) has inverse x = y {\displaystyle x={\sqrt {y}}} {\displaystyle x={\sqrt {y}}}.
d y d x = 2 x         ;         d x d y = 1 2 y = 1 2 x {\displaystyle {\frac {dy}{dx}}=2x{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {dx}{dy}}={\frac {1}{2{\sqrt {y}}}}={\frac {1}{2x}}} {\displaystyle {\frac {dy}{dx}}=2x{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {dx}{dy}}={\frac {1}{2{\sqrt {y}}}}={\frac {1}{2x}}}
d y d x d x d y = 2 x 1 2 x = 1. {\displaystyle {\frac {dy}{dx}},円\cdot ,円{\frac {dx}{dy}}=2x\cdot {\frac {1}{2x}}=1.} {\displaystyle {\frac {dy}{dx}},円\cdot ,円{\frac {dx}{dy}}=2x\cdot {\frac {1}{2x}}=1.}

At x = 0 {\displaystyle x=0} {\displaystyle x=0}, however, there is a problem: the graph of the square root function becomes vertical, corresponding to a horizontal tangent for the square function.

  • y = e x {\displaystyle y=e^{x}} {\displaystyle y=e^{x}} (for real x) has inverse x = ln y {\displaystyle x=\ln {y}} {\displaystyle x=\ln {y}} (for positive y {\displaystyle y} {\displaystyle y})
d y d x = e x         ;         d x d y = 1 y = e x {\displaystyle {\frac {dy}{dx}}=e^{x}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {dx}{dy}}={\frac {1}{y}}=e^{-x}} {\displaystyle {\frac {dy}{dx}}=e^{x}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {dx}{dy}}={\frac {1}{y}}=e^{-x}}
d y d x d x d y = e x e x = 1. {\displaystyle {\frac {dy}{dx}},円\cdot ,円{\frac {dx}{dy}}=e^{x}\cdot e^{-x}=1.} {\displaystyle {\frac {dy}{dx}},円\cdot ,円{\frac {dx}{dy}}=e^{x}\cdot e^{-x}=1.}

Additional properties

[edit ]
f 1 ( x ) = 1 f ( f 1 ( x ) ) d x + C . {\displaystyle {f^{-1}}(x)=\int {\frac {1}{f'({f^{-1}}(x))}},円{dx}+C.} {\displaystyle {f^{-1}}(x)=\int {\frac {1}{f'({f^{-1}}(x))}},円{dx}+C.}
This is only useful if the integral exists. In particular we need f ( x ) {\displaystyle f'(x)} {\displaystyle f'(x)} to be non-zero across the range of integration.
It follows that a function that has a continuous derivative has an inverse in a neighbourhood of every point where the derivative is non-zero. This need not be true if the derivative is not continuous.
  • Another very interesting and useful property is the following:
f 1 ( x ) d x = x f 1 ( x ) F ( f 1 ( x ) ) + C {\displaystyle \int f^{-1}(x),円{dx}=xf^{-1}(x)-F(f^{-1}(x))+C} {\displaystyle \int f^{-1}(x),円{dx}=xf^{-1}(x)-F(f^{-1}(x))+C}
Where F {\displaystyle F} {\displaystyle F} denotes the antiderivative of f {\displaystyle f} {\displaystyle f}.
  • The inverse of the derivative of f(x) is also of interest, as it is used in showing the convexity of the Legendre transform.

Let z = f ( x ) {\displaystyle z=f'(x)} {\displaystyle z=f'(x)} then we have, assuming f ( x ) 0 {\displaystyle f''(x)\neq 0} {\displaystyle f''(x)\neq 0}: d ( f ) 1 ( z ) d z = 1 f ( x ) {\displaystyle {\frac {d(f')^{-1}(z)}{dz}}={\frac {1}{f''(x)}}} {\displaystyle {\frac {d(f')^{-1}(z)}{dz}}={\frac {1}{f''(x)}}}This can be shown using the previous notation y = f ( x ) {\displaystyle y=f(x)} {\displaystyle y=f(x)}. Then we have:

f ( x ) = d y d x = d y d z d z d x = d y d z f ( x ) d y d z = f ( x ) f ( x ) {\displaystyle f'(x)={\frac {dy}{dx}}={\frac {dy}{dz}}{\frac {dz}{dx}}={\frac {dy}{dz}}f''(x)\Rightarrow {\frac {dy}{dz}}={\frac {f'(x)}{f''(x)}}} {\displaystyle f'(x)={\frac {dy}{dx}}={\frac {dy}{dz}}{\frac {dz}{dx}}={\frac {dy}{dz}}f''(x)\Rightarrow {\frac {dy}{dz}}={\frac {f'(x)}{f''(x)}}}Therefore:
d ( f ) 1 ( z ) d z = d x d z = d y d z d x d y = f ( x ) f ( x ) 1 f ( x ) = 1 f ( x ) {\displaystyle {\frac {d(f')^{-1}(z)}{dz}}={\frac {dx}{dz}}={\frac {dy}{dz}}{\frac {dx}{dy}}={\frac {f'(x)}{f''(x)}}{\frac {1}{f'(x)}}={\frac {1}{f''(x)}}} {\displaystyle {\frac {d(f')^{-1}(z)}{dz}}={\frac {dx}{dz}}={\frac {dy}{dz}}{\frac {dx}{dy}}={\frac {f'(x)}{f''(x)}}{\frac {1}{f'(x)}}={\frac {1}{f''(x)}}}

By induction, we can generalize this result for any integer n 1 {\displaystyle n\geq 1} {\displaystyle n\geq 1}, with z = f ( n ) ( x ) {\displaystyle z=f^{(n)}(x)} {\displaystyle z=f^{(n)}(x)}, the nth derivative of f(x), and y = f ( n 1 ) ( x ) {\displaystyle y=f^{(n-1)}(x)} {\displaystyle y=f^{(n-1)}(x)}, assuming f ( i ) ( x ) 0  for  0 < i n + 1 {\displaystyle f^{(i)}(x)\neq 0{\text{ for }}0<i\leq n+1} {\displaystyle f^{(i)}(x)\neq 0{\text{ for }}0<i\leq n+1}:

d ( f ( n ) ) 1 ( z ) d z = 1 f ( n + 1 ) ( x ) {\displaystyle {\frac {d(f^{(n)})^{-1}(z)}{dz}}={\frac {1}{f^{(n+1)}(x)}}} {\displaystyle {\frac {d(f^{(n)})^{-1}(z)}{dz}}={\frac {1}{f^{(n+1)}(x)}}}

Higher derivatives

[edit ]

The chain rule given above is obtained by differentiating the identity f 1 ( f ( x ) ) = x {\displaystyle f^{-1}(f(x))=x} {\displaystyle f^{-1}(f(x))=x} with respect to x. One can continue the same process for higher derivatives. Differentiating the identity twice with respect to x, one obtains

d 2 y d x 2 d x d y + d d x ( d x d y ) ( d y d x ) = 0 , {\displaystyle {\frac {d^{2}y}{dx^{2}}},円\cdot ,円{\frac {dx}{dy}}+{\frac {d}{dx}}\left({\frac {dx}{dy}}\right),円\cdot ,円\left({\frac {dy}{dx}}\right)=0,} {\displaystyle {\frac {d^{2}y}{dx^{2}}},円\cdot ,円{\frac {dx}{dy}}+{\frac {d}{dx}}\left({\frac {dx}{dy}}\right),円\cdot ,円\left({\frac {dy}{dx}}\right)=0,}

that is simplified further by the chain rule as

d 2 y d x 2 d x d y + d 2 x d y 2 ( d y d x ) 2 = 0. {\displaystyle {\frac {d^{2}y}{dx^{2}}},円\cdot ,円{\frac {dx}{dy}}+{\frac {d^{2}x}{dy^{2}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{2}=0.} {\displaystyle {\frac {d^{2}y}{dx^{2}}},円\cdot ,円{\frac {dx}{dy}}+{\frac {d^{2}x}{dy^{2}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{2}=0.}

Replacing the first derivative, using the identity obtained earlier, we get

d 2 y d x 2 = d 2 x d y 2 ( d y d x ) 3 . {\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {d^{2}x}{dy^{2}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{3}.} {\displaystyle {\frac {d^{2}y}{dx^{2}}}=-{\frac {d^{2}x}{dy^{2}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{3}.}

Similarly for the third derivative:

d 3 y d x 3 = d 3 x d y 3 ( d y d x ) 4 3 d 2 x d y 2 d 2 y d x 2 ( d y d x ) 2 {\displaystyle {\frac {d^{3}y}{dx^{3}}}=-{\frac {d^{3}x}{dy^{3}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{4}-3{\frac {d^{2}x}{dy^{2}}},円\cdot ,円{\frac {d^{2}y}{dx^{2}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{2}} {\displaystyle {\frac {d^{3}y}{dx^{3}}}=-{\frac {d^{3}x}{dy^{3}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{4}-3{\frac {d^{2}x}{dy^{2}}},円\cdot ,円{\frac {d^{2}y}{dx^{2}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{2}}

or using the formula for the second derivative,

d 3 y d x 3 = d 3 x d y 3 ( d y d x ) 4 + 3 ( d 2 x d y 2 ) 2 ( d y d x ) 5 {\displaystyle {\frac {d^{3}y}{dx^{3}}}=-{\frac {d^{3}x}{dy^{3}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{4}+3\left({\frac {d^{2}x}{dy^{2}}}\right)^{2},円\cdot ,円\left({\frac {dy}{dx}}\right)^{5}} {\displaystyle {\frac {d^{3}y}{dx^{3}}}=-{\frac {d^{3}x}{dy^{3}}},円\cdot ,円\left({\frac {dy}{dx}}\right)^{4}+3\left({\frac {d^{2}x}{dy^{2}}}\right)^{2},円\cdot ,円\left({\frac {dy}{dx}}\right)^{5}}

These formulas can also be written using Lagrange's notation. If f and g are inverses, then

g ( x ) = f ( g ( x ) ) [ f ( g ( x ) ) ] 3 {\displaystyle g''(x)={\frac {-f''(g(x))}{[f'(g(x))]^{3}}}} {\displaystyle g''(x)={\frac {-f''(g(x))}{[f'(g(x))]^{3}}}}

Higher derivatives of an inverse function can also be expressed with Faà di Bruno's formula and can be written succinctly as:

[ f 1 ] ( n ) ( x ) = [ ( 1 f ( t ) d d t ) n t ] t = f 1 ( x ) {\displaystyle \left[f^{-1}\right]^{(n)}(x)=\left[\left({\frac {1}{f'(t)}}{\frac {d}{dt}}\right)^{n}t\right]_{t=f^{-1}(x)}} {\displaystyle \left[f^{-1}\right]^{(n)}(x)=\left[\left({\frac {1}{f'(t)}}{\frac {d}{dt}}\right)^{n}t\right]_{t=f^{-1}(x)}}

From this expression, one can also derive the nth-integration of inverse function with base-point a using Cauchy formula for repeated integration whenever f ( f 1 ( x ) ) = x {\displaystyle f(f^{-1}(x))=x} {\displaystyle f(f^{-1}(x))=x}:

[ f 1 ] ( n ) ( x ) = 1 n ! ( f 1 ( a ) ( x a ) n + f 1 ( a ) f 1 ( x ) ( x f ( u ) ) n d u ) {\displaystyle \left[f^{-1}\right]^{(-n)}(x)={\frac {1}{n!}}\left(f^{-1}(a)(x-a)^{n}+\int _{f^{-1}(a)}^{f^{-1}(x)}\left(x-f(u)\right)^{n},円du\right)} {\displaystyle \left[f^{-1}\right]^{(-n)}(x)={\frac {1}{n!}}\left(f^{-1}(a)(x-a)^{n}+\int _{f^{-1}(a)}^{f^{-1}(x)}\left(x-f(u)\right)^{n},円du\right)}

Example

[edit ]
  • y = e x {\displaystyle y=e^{x}} {\displaystyle y=e^{x}} has the inverse x = ln y {\displaystyle x=\ln y} {\displaystyle x=\ln y}. Using the formula for the second derivative of the inverse function,
d y d x = d 2 y d x 2 = e x = y         ;         ( d y d x ) 3 = y 3 ; {\displaystyle {\frac {dy}{dx}}={\frac {d^{2}y}{dx^{2}}}=e^{x}=y{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}\left({\frac {dy}{dx}}\right)^{3}=y^{3};} {\displaystyle {\frac {dy}{dx}}={\frac {d^{2}y}{dx^{2}}}=e^{x}=y{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}\left({\frac {dy}{dx}}\right)^{3}=y^{3};}

so that

d 2 x d y 2 y 3 + y = 0         ;         d 2 x d y 2 = 1 y 2 {\displaystyle {\frac {d^{2}x}{dy^{2}}},円\cdot ,円y^{3}+y=0{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {d^{2}x}{dy^{2}}}=-{\frac {1}{y^{2}}}} {\displaystyle {\frac {d^{2}x}{dy^{2}}},円\cdot ,円y^{3}+y=0{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }};{\mbox{ }}{\mbox{ }}{\mbox{ }}{\mbox{ }}{\frac {d^{2}x}{dy^{2}}}=-{\frac {1}{y^{2}}}},

which agrees with the direct calculation.

See also

[edit ]

References

[edit ]
  1. ^ "Derivatives of Inverse Functions". oregonstate.edu. Archived from the original on 2021年04月10日. Retrieved 2019年07月26日.
  • Marsden, Jerrold E.; Weinstein, Alan (1981). "Chapter 8: Inverse Functions and the Chain Rule". Calculus unlimited (PDF). Menlo Park, Calif.: Benjamin/Cummings Pub. Co. ISBN 0-8053-6932-5.
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics

AltStyle によって変換されたページ (->オリジナル) /