Jump to content
Wikipedia The Free Encyclopedia

Integration using Euler's formula

From Wikipedia, the free encyclopedia
Use of complex numbers to evaluate integrals
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Integration using Euler's formula" – news · newspapers · books · scholar · JSTOR
(July 2019) (Learn how and when to remove this message)
Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t),円dt=f(b)-f(a)} {\displaystyle \int _{a}^{b}f'(t),円dt=f(b)-f(a)}

In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} {\displaystyle e^{ix}} and e i x {\displaystyle e^{-ix}} {\displaystyle e^{-ix}} and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts, and is sufficiently powerful to integrate any rational expression involving trigonometric functions.[1]

Euler's formula

[edit ]

Euler's formula states that[2]

e i x = cos x + i sin x . {\displaystyle e^{ix}=\cos x+i,円\sin x.} {\displaystyle e^{ix}=\cos x+i,円\sin x.}

Substituting x {\displaystyle -x} {\displaystyle -x} for x {\displaystyle x} {\displaystyle x} gives the equation

e i x = cos x i sin x {\displaystyle e^{-ix}=\cos x-i,円\sin x} {\displaystyle e^{-ix}=\cos x-i,円\sin x}

because cosine is an even function and sine is odd. These two equations can be solved for the sine and cosine to give

cos x = e i x + e i x 2 and sin x = e i x e i x 2 i . {\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}}\quad {\text{and}}\quad \sin x={\frac {e^{ix}-e^{-ix}}{2i}}.} {\displaystyle \cos x={\frac {e^{ix}+e^{-ix}}{2}}\quad {\text{and}}\quad \sin x={\frac {e^{ix}-e^{-ix}}{2i}}.}

Examples

[edit ]

First example

[edit ]

Consider the integral

cos 2 x d x . {\displaystyle \int \cos ^{2}x,円dx.} {\displaystyle \int \cos ^{2}x,円dx.}

The standard approach to this integral is to use a half-angle formula to simplify the integrand. We can use Euler's identity instead:

cos 2 x d x = ( e i x + e i x 2 ) 2 d x = 1 4 ( e 2 i x + 2 + e 2 i x ) d x {\displaystyle {\begin{aligned}\int \cos ^{2}x,円dx,円&=,円\int \left({\frac {e^{ix}+e^{-ix}}{2}}\right)^{2}dx\\[6pt]&=,円{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx\end{aligned}}} {\displaystyle {\begin{aligned}\int \cos ^{2}x,円dx,円&=,円\int \left({\frac {e^{ix}+e^{-ix}}{2}}\right)^{2}dx\\[6pt]&=,円{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx\end{aligned}}}

At this point, it would be possible to change back to real numbers using the formula e2ix + e−2ix = 2 cos 2x. Alternatively, we can integrate the complex exponentials and not change back to trigonometric functions until the end:

1 4 ( e 2 i x + 2 + e 2 i x ) d x = 1 4 ( e 2 i x 2 i + 2 x e 2 i x 2 i ) + C = 1 4 ( 2 x + sin 2 x ) + C . {\displaystyle {\begin{aligned}{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx&={\frac {1}{4}}\left({\frac {e^{2ix}}{2i}}+2x-{\frac {e^{-2ix}}{2i}}\right)+C\\[6pt]&={\frac {1}{4}}\left(2x+\sin 2x\right)+C.\end{aligned}}} {\displaystyle {\begin{aligned}{\frac {1}{4}}\int \left(e^{2ix}+2+e^{-2ix}\right)dx&={\frac {1}{4}}\left({\frac {e^{2ix}}{2i}}+2x-{\frac {e^{-2ix}}{2i}}\right)+C\\[6pt]&={\frac {1}{4}}\left(2x+\sin 2x\right)+C.\end{aligned}}}

Second example

[edit ]

Consider the integral

sin 2 x cos 4 x d x . {\displaystyle \int \sin ^{2}x\cos 4x,円dx.} {\displaystyle \int \sin ^{2}x\cos 4x,円dx.}

This integral would be extremely tedious to solve using trigonometric identities, but using Euler's identity makes it relatively painless:

sin 2 x cos 4 x d x = ( e i x e i x 2 i ) 2 ( e 4 i x + e 4 i x 2 ) d x = 1 8 ( e 2 i x 2 + e 2 i x ) ( e 4 i x + e 4 i x ) d x = 1 8 ( e 6 i x 2 e 4 i x + e 2 i x + e 2 i x 2 e 4 i x + e 6 i x ) d x . {\displaystyle {\begin{aligned}\int \sin ^{2}x\cos 4x,円dx&=\int \left({\frac {e^{ix}-e^{-ix}}{2i}}\right)^{2}\left({\frac {e^{4ix}+e^{-4ix}}{2}}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{2ix}-2+e^{-2ix}\right)\left(e^{4ix}+e^{-4ix}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{6ix}-2e^{4ix}+e^{2ix}+e^{-2ix}-2e^{-4ix}+e^{-6ix}\right)dx.\end{aligned}}} {\displaystyle {\begin{aligned}\int \sin ^{2}x\cos 4x,円dx&=\int \left({\frac {e^{ix}-e^{-ix}}{2i}}\right)^{2}\left({\frac {e^{4ix}+e^{-4ix}}{2}}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{2ix}-2+e^{-2ix}\right)\left(e^{4ix}+e^{-4ix}\right)dx\\[6pt]&=-{\frac {1}{8}}\int \left(e^{6ix}-2e^{4ix}+e^{2ix}+e^{-2ix}-2e^{-4ix}+e^{-6ix}\right)dx.\end{aligned}}}

At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives

sin 2 x cos 4 x d x = 1 24 sin 6 x + 1 8 sin 4 x 1 8 sin 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x,円dx=-{\frac {1}{24}}\sin 6x+{\frac {1}{8}}\sin 4x-{\frac {1}{8}}\sin 2x+C.} {\displaystyle \int \sin ^{2}x\cos 4x,円dx=-{\frac {1}{24}}\sin 6x+{\frac {1}{8}}\sin 4x-{\frac {1}{8}}\sin 2x+C.}

Using real parts

[edit ]

In addition to Euler's identity, it can be helpful to make judicious use of the real parts of complex expressions. For example, consider the integral

e x cos x d x . {\displaystyle \int e^{x}\cos x,円dx.} {\displaystyle \int e^{x}\cos x,円dx.}

Since cos x is the real part of eix, we know that

e x cos x d x = Re e x e i x d x . {\displaystyle \int e^{x}\cos x,円dx=\operatorname {Re} \int e^{x}e^{ix},円dx.} {\displaystyle \int e^{x}\cos x,円dx=\operatorname {Re} \int e^{x}e^{ix},円dx.}

The integral on the right is easy to evaluate:

e x e i x d x = e ( 1 + i ) x d x = e ( 1 + i ) x 1 + i + C . {\displaystyle \int e^{x}e^{ix},円dx=\int e^{(1+i)x},円dx={\frac {e^{(1+i)x}}{1+i}}+C.} {\displaystyle \int e^{x}e^{ix},円dx=\int e^{(1+i)x},円dx={\frac {e^{(1+i)x}}{1+i}}+C.}

Thus:

e x cos x d x = Re ( e ( 1 + i ) x 1 + i ) + C = e x Re ( e i x 1 + i ) + C = e x Re ( e i x ( 1 i ) 2 ) + C = e x cos x + sin x 2 + C . {\displaystyle {\begin{aligned}\int e^{x}\cos x,円dx&=\operatorname {Re} \left({\frac {e^{(1+i)x}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}(1-i)}{2}}\right)+C\\[6pt]&=e^{x}{\frac {\cos x+\sin x}{2}}+C.\end{aligned}}} {\displaystyle {\begin{aligned}\int e^{x}\cos x,円dx&=\operatorname {Re} \left({\frac {e^{(1+i)x}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}}{1+i}}\right)+C\\[6pt]&=e^{x}\operatorname {Re} \left({\frac {e^{ix}(1-i)}{2}}\right)+C\\[6pt]&=e^{x}{\frac {\cos x+\sin x}{2}}+C.\end{aligned}}}

Fractions

[edit ]

In general, this technique may be used to evaluate any fractions involving trigonometric functions. For example, consider the integral

1 + cos 2 x cos x + cos 3 x d x . {\displaystyle \int {\frac {1+\cos ^{2}x}{\cos x+\cos 3x}},円dx.} {\displaystyle \int {\frac {1+\cos ^{2}x}{\cos x+\cos 3x}},円dx.}

Using Euler's identity, this integral becomes

1 2 6 + e 2 i x + e 2 i x e i x + e i x + e 3 i x + e 3 i x d x . {\displaystyle {\frac {1}{2}}\int {\frac {6+e^{2ix}+e^{-2ix}}{e^{ix}+e^{-ix}+e^{3ix}+e^{-3ix}}},円dx.} {\displaystyle {\frac {1}{2}}\int {\frac {6+e^{2ix}+e^{-2ix}}{e^{ix}+e^{-ix}+e^{3ix}+e^{-3ix}}},円dx.}

If we now make the substitution u = e i x {\displaystyle u=e^{ix}} {\displaystyle u=e^{ix}}, the result is the integral of a rational function:

i 2 1 + 6 u 2 + u 4 1 + u 2 + u 4 + u 6 d u . {\displaystyle -{\frac {i}{2}}\int {\frac {1+6u^{2}+u^{4}}{1+u^{2}+u^{4}+u^{6}}},円du.} {\displaystyle -{\frac {i}{2}}\int {\frac {1+6u^{2}+u^{4}}{1+u^{2}+u^{4}+u^{6}}},円du.}

One may proceed using partial fraction decomposition.

See also

[edit ]

References

[edit ]
  1. ^ Kilburn, Korey (2019). "Applying Euler's Formula to Integrate". American Review of Mathematics and Statistics. 7. American Research Institute for Policy Development: 1–2. doi:10.15640/arms.v7n2a1 (inactive 12 July 2025). eISSN 2374-2356. hdl:2158/1183208 . ISSN 2374-2348.{{cite journal}}: CS1 maint: DOI inactive as of July 2025 (link)
  2. ^ Weisstein, Eric W. "Euler Formula". mathworld.wolfram.com. Retrieved 2021年03月17日.
Types of
integrals
Integration
techniques
Improper integrals
Stochastic integrals
Miscellaneous

AltStyle によって変換されたページ (->オリジナル) /