Jump to content
Wikipedia The Free Encyclopedia

Hyperinteger

From Wikipedia, the free encyclopedia
Hyperreal number that is equal to its own integer part

In nonstandard analysis, a hyperinteger n is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence (1, 2, 3, ...) in the ultrapower construction of the hyperreals.

Discussion

[edit ]

The standard integer part function:

x {\displaystyle \lfloor x\rfloor } {\displaystyle \lfloor x\rfloor }

is defined for all real x and equals the greatest integer not exceeding x. By the transfer principle of nonstandard analysis, there exists a natural extension:

{\displaystyle {}^{*}\!\lfloor ,円\cdot ,円\rfloor } {\displaystyle {}^{*}\!\lfloor ,円\cdot ,円\rfloor }

defined for all hyperreal x, and we say that x is a hyperinteger if x = x . {\displaystyle x={}^{*}\!\lfloor x\rfloor .} {\displaystyle x={}^{*}\!\lfloor x\rfloor .} Thus, the hyperintegers are the image of the integer part function on the hyperreals.

Internal sets

[edit ]

The set Z {\displaystyle ^{*}\mathbb {Z} } {\displaystyle ^{*}\mathbb {Z} } of all hyperintegers is an internal subset of the hyperreal line R {\displaystyle ^{*}\mathbb {R} } {\displaystyle ^{*}\mathbb {R} }. The set of all finite hyperintegers (i.e. Z {\displaystyle \mathbb {Z} } {\displaystyle \mathbb {Z} } itself) is not an internal subset. Elements of the complement Z Z {\displaystyle ^{*}\mathbb {Z} \setminus \mathbb {Z} } {\displaystyle ^{*}\mathbb {Z} \setminus \mathbb {Z} } are called, depending on the author, nonstandard, unlimited, or infinite hyperintegers. The reciprocal of an infinite hyperinteger is always an infinitesimal.

Nonnegative hyperintegers are sometimes called hypernatural numbers. Similar remarks apply to the sets N {\displaystyle \mathbb {N} } {\displaystyle \mathbb {N} } and N {\displaystyle ^{*}\mathbb {N} } {\displaystyle ^{*}\mathbb {N} }. Note that the latter gives a non-standard model of arithmetic in the sense of Skolem.

References

[edit ]
Number systems
Sets of definable numbers
Composition algebras
  • Division algebras: Real numbers ( R {\displaystyle \mathbb {R} } {\displaystyle \mathbb {R} })
  • Complex numbers ( C {\displaystyle \mathbb {C} } {\displaystyle \mathbb {C} })
  • Quaternions ( H {\displaystyle \mathbb {H} } {\displaystyle \mathbb {H} })
  • Octonions ( O {\displaystyle \mathbb {O} } {\displaystyle \mathbb {O} })
Split
types
Other hypercomplex
Infinities and infinitesimals
Other types
History
Related branches
Formalizations
Individual concepts
Mathematicians
Textbooks

AltStyle によって変換されたページ (->オリジナル) /