Extended natural numbers
In mathematics, the extended natural numbers is a set which contains the values {\displaystyle 0,1,2,\dots } and {\displaystyle \infty } (infinity). That is, it is the result of adding a maximum element {\displaystyle \infty } to the natural numbers. Addition and multiplication work as normal for finite values, and are extended by the rules {\displaystyle n+\infty =\infty +n=\infty } ({\displaystyle n\in \mathbb {N} \cup \{\infty \}}), {\displaystyle 0\times \infty =\infty \times 0=0} and {\displaystyle m\times \infty =\infty \times m=\infty } for {\displaystyle m\neq 0}.
With addition and multiplication, {\displaystyle \mathbb {N} \cup \{\infty \}} is a semiring but not a ring, as {\displaystyle \infty } lacks an additive inverse.[1] The set can be denoted by {\displaystyle {\overline {\mathbb {N} }}}, {\displaystyle \mathbb {N} _{\infty }} or {\displaystyle \mathbb {N} ^{\infty }}.[2] [3] [4] It is a subset of the extended real number line, which extends the real numbers by adding {\displaystyle -\infty } and {\displaystyle +\infty }.[2]
Applications
[edit ]In graph theory, the extended natural numbers are used to define distances in graphs, with {\displaystyle \infty } being the distance between two unconnected vertices.[2] They can be used to show the extension of some results, such as the max-flow min-cut theorem, to infinite graphs.[5]
In topology, the topos of right actions on the extended natural numbers is a category PRO of projection algebras.[4]
In constructive mathematics, the extended natural numbers {\displaystyle \mathbb {N} _{\infty }} are a one-point compactification of the natural numbers, yielding the set of non-increasing binary sequences i.e. {\displaystyle (x_{0},x_{1},\dots )\in 2^{\mathbb {N} }} such that {\displaystyle \forall i\in \mathbb {N} :x_{i}\geq x_{i+1}}. The sequence {\displaystyle 1^{n}0^{\omega }} represents {\displaystyle n}, while the sequence {\displaystyle 1^{\omega }} represents {\displaystyle \infty }. It is a retract of {\displaystyle 2^{\mathbb {N} }} and the claim that {\displaystyle \mathbb {N} \cup \{\infty \}\subseteq \mathbb {N} _{\infty }} implies the limited principle of omniscience.[3]
Notes
[edit ]- ^ Sakarovitch (2009), p. 28.
- ^ a b c Koch (2020).
- ^ a b Escardó (2013).
- ^ a b Khanjanzadeh & Madanshekaf (2018).
- ^ Folkman & Fulkerson (1970).
References
[edit ]- Folkman, Jon; Fulkerson, D.R. (1970). "Flows in Infinite Graphs". Journal of Combinatorial Theory . 8 (1): 30–44. doi:10.1016/S0021-9800(70)80006-0 .
- Escardó, Martín H (2013). "Infinite Sets That Satisfy The Principle of Omniscience in Any Variety of Constructive Mathematics". Journal of Symbolic Logic . 78 (3): 764–784. doi:10.2178/jsl.7803040. JSTOR 43303679.
- Koch, Sebastian (2020). "Extended Natural Numbers and Counters" (PDF). Formalized Mathematics. 28 (3): 239–249. doi:10.2478/forma-2020-0021.
- Khanjanzadeh, Zeinab; Madanshekaf, Ali (2018). "Weak Ideal Topology in the Topos of Right Acts Over a Monoid". Communications in Algebra . 46 (5): 1868–1888. doi:10.1080/00927872.2017.1360330.
- Sakarovitch, Jacques (2009). Elements of automata theory. Translated from the French by Reuben Thomas. Cambridge: Cambridge University Press. ISBN 978-0-521-84425-3. Zbl 1188.68177.
Further reading
[edit ]- Robert, Leonel (3 September 2013). "The Cuntz semigroup of some spaces of dimension at most two". arXiv:0711.4396 [math.OA].
- Lightstone, A. H. (1972). "Infinitesimals". The American Mathematical Monthly . 79 (3): 242–251. doi:10.1080/00029890.1972.11993024.
- Khanjanzadeh, Zeinab; Madanshekaf, Ali (2019). "On Projection Algebras". Southeast Asian Bulletin of Mathematics. 43 (2).
External links
[edit ]- Extended natural number at the nLab