[フレーム]
はてなブックマークアプリ

サクサク読めて、
アプリ限定の機能も多数!

アプリで開く

気に入った記事をブックマーク

  • 気に入った記事を保存できます
    保存した記事の一覧は、はてなブックマークで確認・編集ができます
  • 記事を読んだ感想やメモを書き残せます
  • 非公開でブックマークすることもできます
適切な情報に変更

エントリーの編集

loading...

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。

タイトルガイドライン

このページのオーナーなので以下のアクションを実行できます

タイトル、本文などの情報を
再取得することができます
コメントを非表示にできます コメント表示の設定

ブックマークしました

ここにツイート内容が記載されます https://b.hatena.ne.jp/URLはspanで囲んでください

Twitterで共有

ONにすると、次回以降このダイアログを飛ばしてTwitterに遷移します

1user がブックマーク コメント 0

ガイドラインをご確認の上、良識あるコメントにご協力ください

0 / 0
入力したタグを追加

現在プライベートモードです 設定を変更する

おすすめタグタグについて

よく使うタグ

【E資格対策】k-meansの実装方法について詳しく見る

ガイドラインをご確認の上、良識あるコメントにご協力ください

0 / 0
入力したタグを追加

現在プライベートモードです 設定を変更する

おすすめタグタグについて

よく使うタグ

はてなブックマーク

はてなブックマークで
関心をシェアしよう

みんなの興味と感想が集まることで
新しい発見や、深堀りがもっと楽しく

ユーザー登録

アカウントをお持ちの方はログインページ

記事へのコメント0

  • 注目コメント
  • 新着コメント
新着コメントはまだありません。
このエントリーにコメントしてみましょう。

注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

リンクを埋め込む

以下のコードをコピーしてサイトに埋め込むことができます

プレビュー
アプリのスクリーンショット
いまの話題をアプリでチェック!
  • バナー広告なし
  • ミュート機能あり
  • ダークモード搭載
アプリをダウンロード

関連記事

usersに達しました!

さんが1番目にブックマークした記事「【E資格対策】k-me...」が注目されています。

気持ちをシェアしよう

ツイートする

【E資格対策】k-meansの実装方法について詳しく見る

E資格では、numpyだけで実装したk-means法のコードが出題されます。 k-means法の理解のために、それぞれ... E資格では、numpyだけで実装したk-means法のコードが出題されます。 k-means法の理解のために、それぞれのコードが何を計算しているのか、をまとめてみました。 k-means法の実装(全体) まず、全体感から眺めていきます。 k-means法は、大きく三つの関数で構成されます。 重心の初期化 重心からの距離の計算 クラスタリング(k-means)の実行 import numpy as np #1 重心の初期化 def init_centroid(X, n_data, k): idx = np.random.permutation(n_data)[:k] centroids = X[idx] return centroids #2 重心からの距離の計算 def compute_distance(X, k, n_data, centroids): distances = np.ze

ブックマークしたユーザー

すべてのユーザーの
詳細を表示します

ブックマークしたすべてのユーザー

同じサイトの新着

同じサイトの新着をもっと読む

いま人気の記事

いま人気の記事をもっと読む

いま人気の記事 - テクノロジー

いま人気の記事 - テクノロジーをもっと読む

新着記事 - テクノロジー

新着記事 - テクノロジーをもっと読む

同時期にブックマークされた記事

いま人気の記事 - 企業メディア

企業メディアをもっと読む

はてなブックマーク

公式Twitter

はてなのサービス

Copyright © 2005-2025 Hatena. All Rights Reserved.
設定を変更しましたx

AltStyle によって変換されたページ (->オリジナル) /