Close
Close window
JacobiP - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

JacobiP

Jacobi function

Calling Sequence

JacobiP(n, a, b, x)

Parameters

n

-

algebraic expression

a

-

algebraic expression

b

-

algebraic expression

x

-

algebraic expression

Description

If the first parameter is a non-negative integer, the JacobiP(n, a, b, x) function computes the nth Jacobi polynomial with parameters a and b evaluated at x.

These polynomials are orthogonal on the interval −1,1 with respect to the weight function wx=1xa1+xb when a and b are greater than -1. They satisfy the following:

−11Pma,bxPna,bxwx&d;x={0nm2a+b+1Γn+a+1Γn+b+12n+a+b+1Γn+a+b+1n!n=m

The polynomials satisfy the following recurrence relation:

JacobiP0,a,b,x=1

JacobiP1,a,b,x=a2b2+1+a2+b2x

JacobiPn,a,b,x=2n+a+b1a2b2+2n+a+b22n+a+bxJacobiPn1,a,b,x2nn+a+b2n+a+b2n+a1n+b12n+a+bJacobiPn2,a,b,xnn+a+b2n+a+b2,for n > 1.

For n and not equal to a non-negative integer and a not a negative integer, the analytic extension of the Jacobi polynomial is given by the following:

JacobiPn,a,b,x=a+nahypergeomn,a+b+n+1,a+1,12x2

Examples

>

JacobiP4,1,34,x

JacobiP4,1,34,x

(1)
>

simplify,JacobiP

190753276839158192x12973516384x2+97658192x3+38083532768x4

(2)
>

JacobiP2.2,1,23,0.4

−0.1993478307

(3)

Compatibility

The JacobiP command was updated in Maple 2020.


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /