Close
Close window
ChebyshevU - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

ChebyshevU

Chebyshev function of the second kind

Calling Sequence

ChebyshevU(n, x)

Parameters

n

-

algebraic expression (the degree)

x

-

algebraic expression

Description

If the first parameter is a non-negative integer, then the ChebyshevU(n, x) function computes the nth Chebyshev polynomial of the second kind evaluated at x.

These polynomials are orthogonal on the interval −1,1 with respect to the weight function wx=x2+1. They satisfy:

11wtChebyshevUm,tChebyshevUn,tⅆt={0nm12πn=m

Chebyshev polynomials of the second kind satisfy the following recurrence relation:

ChebyshevUn,x=2xChebyshevUn1,xChebyshevUn2,x,for n >= 2

where ChebyshevU(0,x) = 1 and ChebyshevU(1,x) = 2*x.

This definition is analytically extended for arbitrary values of the first argument by

ChebyshevUn,x=n+1hypergeomn,n+2,32,12x2

Examples

>

ChebyshevU3,x

ChebyshevU3,x

(1)
>

simplify,ChebyshevU

8x34x

(2)
>

ChebyshevU3.2,2.1

86.44386715

(3)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /