Close
Close window
ChebyshevT - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Mozilla Firefox.
Maplesoft logo
Maplesoft logo

Online Help

All Products Maple MapleSim


[フレーム] [フレーム]

ChebyshevT

Chebyshev function of the first kind

Calling Sequence

ChebyshevT(n, x)

Parameters

n

-

algebraic expression (the degree)

x

-

algebraic expression

Description

If the first parameter is a non-negative integer, the ChebyshevT(n, x) function computes the nth Chebyshev polynomial of the first kind evaluated at x.

These polynomials are orthogonal on the interval (-1, 1) with respect to the weight function wx=1x2+1. These polynomials satisfy the following:

11wtChebyshevTm,tChebyshevTn,tⅆt=0nmπn=m=012πn=m0

Chebyshev polynomials of the first kind satisfy the following recurrence relation:

ChebyshevTn,x=2xChebyshevTn1,xChebyshevTn2,x,for n >= 2

where ChebyshevT(0,x) = 1 and ChebyshevT(1,x) = x.

This definition is analytically extended for arbitrary values of the first argument by

ChebyshevTa,x=hypergeoma,a,12,12x2

Examples

>

ChebyshevT3,x

ChebyshevT3,x

(1)
>

simplify,ChebyshevT

4x33x

(2)
>

ChebyshevT2.2,0.5

−0.6691306064

(3)
>

ChebyshevT13,x

ChebyshevT13,x

(4)
>

series,ChebyshevT

cosarccosx3

(5)
>

diffChebyshevT1,x,x

xChebyshevT1,xx2+1+ChebyshevT0,xx2+1

(6)


Download Help Document

AltStyle によって変換されたページ (->オリジナル) /