This page shows how to construct (draw) a 30 degree angle with compass and straightedge or ruler. It works by first creating a
rhombus
and then a
diagonal of that rhombus.
Using the properties of a rhombus it can be shown that the angle created has a measure of 30 degrees. See the proof below for more on this.
The image below is the final drawing above with the red items added.
Argument
Reason
1
Line segments PT, TR, RS, PS, TS are
congruent (5 red lines)
All created with the same compass width.
2
PTRS is a rhombus.
A
rhombus is a quadrilateral with four congruent sides.
3
Line segment AS is half the length of TS, and angle PAS is a right angle
Diagonals of a rhombus
bisect each other at right angles. See
Rhombus definition.
4
Line segment AS is half the length of PS
PS is congruent to TS. See (1), (3)
5
Triangle ∆PAS is a
30-60-90 triangle.
∆PAS is a right triangle with two sides in the ratio 1:2. (third side would be √3 by pythagoras).
6
Angle APS has a measure of 30°.
In any triangle, smallest angle is opposite shortest side.
-
Q.E.D
containing two 30° angle exercises.
When you get to the page, use the browser print command to print as many as you wish. The printed output is not copyright.
(C) 2011 Copyright Math Open Reference.
All rights reserved