Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Robust linear model estimation using RANSAC#
In this example, we see how to robustly fit a linear model to faulty data using the RANSAC algorithm.
The ordinary linear regressor is sensitive to outliers, and the fitted line can easily be skewed away from the true underlying relationship of data.
The RANSAC regressor automatically splits the data into inliers and outliers, and the fitted line is determined only by the identified inliers.
plot ransacEstimated coefficients (true, linear regression, RANSAC): 82.1903908407869 [54.17236387] [82.08533159]
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importnumpyasnp frommatplotlibimport pyplot as plt fromsklearnimport datasets, linear_model n_samples = 1000 n_outliers = 50 X, y, coef = datasets.make_regression ( n_samples=n_samples, n_features=1, n_informative=1, noise=10, coef=True, random_state=0, ) # Add outlier data np.random.seed (0) X[:n_outliers] = 3 + 0.5 * np.random.normal (size=(n_outliers, 1)) y[:n_outliers] = -3 + 10 * np.random.normal (size=n_outliers) # Fit line using all data lr = linear_model.LinearRegression () lr.fit(X, y) # Robustly fit linear model with RANSAC algorithm ransac = linear_model.RANSACRegressor () ransac.fit(X, y) inlier_mask = ransac.inlier_mask_ outlier_mask = np.logical_not (inlier_mask) # Predict data of estimated models line_X = np.arange (X.min(), X.max())[:, np.newaxis ] line_y = lr.predict(line_X) line_y_ransac = ransac.predict(line_X) # Compare estimated coefficients print("Estimated coefficients (true, linear regression, RANSAC):") print(coef, lr.coef_, ransac.estimator_.coef_) lw = 2 plt.scatter ( X[inlier_mask], y[inlier_mask], color="yellowgreen", marker=".", label="Inliers" ) plt.scatter ( X[outlier_mask], y[outlier_mask], color="gold", marker=".", label="Outliers" ) plt.plot (line_X, line_y, color="navy", linewidth=lw, label="Linear regressor") plt.plot ( line_X, line_y_ransac, color="cornflowerblue", linewidth=lw, label="RANSAC regressor", ) plt.legend (loc="lower right") plt.xlabel ("Input") plt.ylabel ("Response") plt.show ()
Total running time of the script: (0 minutes 0.091 seconds)
Related examples
Theil-Sen Regression
Robust linear estimator fitting
Robust linear estimator fitting
Robust covariance estimation and Mahalanobis distances relevance
Robust covariance estimation and Mahalanobis distances relevance
IsolationForest example