Note

Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder

Plot individual and voting regression predictions#

A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it averages the individual predictions to form a final prediction. We will use three different regressors to predict the data: GradientBoostingRegressor, RandomForestRegressor, and LinearRegression). Then the above 3 regressors will be used for the VotingRegressor.

Finally, we will plot the predictions made by all models for comparison.

We will work with the diabetes dataset which consists of 10 features collected from a cohort of diabetes patients. The target is a quantitative measure of disease progression one year after baseline.

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
importmatplotlib.pyplotasplt
fromsklearn.datasetsimport load_diabetes
fromsklearn.ensembleimport (
 GradientBoostingRegressor ,
 RandomForestRegressor ,
 VotingRegressor ,
)
fromsklearn.linear_modelimport LinearRegression

Training classifiers#

First, we will load the diabetes dataset and initiate a gradient boosting regressor, a random forest regressor and a linear regression. Next, we will use the 3 regressors to build the voting regressor:

X, y = load_diabetes (return_X_y=True)
# Train classifiers
reg1 = GradientBoostingRegressor (random_state=1)
reg2 = RandomForestRegressor (random_state=1)
reg3 = LinearRegression ()
reg1.fit(X, y)
reg2.fit(X, y)
reg3.fit(X, y)
ereg = VotingRegressor ([("gb", reg1), ("rf", reg2), ("lr", reg3)])
ereg.fit(X, y)
VotingRegressor(estimators=[('gb', GradientBoostingRegressor(random_state=1)),
 ('rf', RandomForestRegressor(random_state=1)),
 ('lr', LinearRegression())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

AltStyle によって変換されたページ (->オリジナル) /



Making predictions#

Now we will use each of the regressors to make the 20 first predictions.

xt = X[:20]
pred1 = reg1.predict(xt)
pred2 = reg2.predict(xt)
pred3 = reg3.predict(xt)
pred4 = ereg.predict(xt)

Plot the results#

Finally, we will visualize the 20 predictions. The red stars show the average prediction made by VotingRegressor.

plt.figure ()
plt.plot (pred1, "gd", label="GradientBoostingRegressor")
plt.plot (pred2, "b^", label="RandomForestRegressor")
plt.plot (pred3, "ys", label="LinearRegression")
plt.plot (pred4, "r*", ms=10, label="VotingRegressor")
plt.tick_params (axis="x", which="both", bottom=False, top=False, labelbottom=False)
plt.ylabel ("predicted")
plt.xlabel ("training samples")
plt.legend (loc="best")
plt.title ("Regressor predictions and their average")
plt.show ()
Regressor predictions and their average

Total running time of the script: (0 minutes 1.018 seconds)

Related examples

Combine predictors using stacking

Combine predictors using stacking

Decision Tree Regression with AdaBoost

Decision Tree Regression with AdaBoost

Gradient Boosting regression

Gradient Boosting regression

Comparing random forests and the multi-output meta estimator

Comparing random forests and the multi-output meta estimator

Gallery generated by Sphinx-Gallery