Note
Go to the end to download the full example code. or to run this example in your browser via JupyterLite or Binder
Demo of affinity propagation clustering algorithm#
Reference: Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007
# Authors: The scikit-learn developers # SPDX-License-Identifier: BSD-3-Clause importnumpyasnp fromsklearnimport metrics fromsklearn.clusterimport AffinityPropagation fromsklearn.datasetsimport make_blobs
Generate sample data#
centers = [[1, 1], [-1, -1], [1, -1]] X, labels_true = make_blobs ( n_samples=300, centers=centers, cluster_std=0.5, random_state=0 )
Compute Affinity Propagation#
af = AffinityPropagation (preference=-50, random_state=0).fit(X) cluster_centers_indices = af.cluster_centers_indices_ labels = af.labels_ n_clusters_ = len(cluster_centers_indices) print("Estimated number of clusters: %d" % n_clusters_) print("Homogeneity: %0.3f" % metrics.homogeneity_score (labels_true, labels)) print("Completeness: %0.3f" % metrics.completeness_score (labels_true, labels)) print("V-measure: %0.3f" % metrics.v_measure_score (labels_true, labels)) print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score (labels_true, labels)) print( "Adjusted Mutual Information: %0.3f" % metrics.adjusted_mutual_info_score (labels_true, labels) ) print( "Silhouette Coefficient: %0.3f" % metrics.silhouette_score (X, labels, metric="sqeuclidean") )
Estimated number of clusters: 3 Homogeneity: 0.872 Completeness: 0.872 V-measure: 0.872 Adjusted Rand Index: 0.912 Adjusted Mutual Information: 0.871 Silhouette Coefficient: 0.753
Plot result#
importmatplotlib.pyplotasplt plt.close ("all") plt.figure (1) plt.clf () colors = plt.cycler("color", plt.cm.viridis(np.linspace (0, 1, 4))) for k, col in zip(range(n_clusters_), colors): class_members = labels == k cluster_center = X[cluster_centers_indices[k]] plt.scatter ( X[class_members, 0], X[class_members, 1], color=col["color"], marker="." ) plt.scatter ( cluster_center[0], cluster_center[1], s=14, color=col["color"], marker="o" ) for x in X[class_members]: plt.plot ( [cluster_center[0], x[0]], [cluster_center[1], x[1]], color=col["color"] ) plt.title ("Estimated number of clusters: %d" % n_clusters_) plt.show ()
Total running time of the script: (0 minutes 0.287 seconds)
Related examples
Demo of DBSCAN clustering algorithm
Demo of DBSCAN clustering algorithm
A demo of the mean-shift clustering algorithm
A demo of the mean-shift clustering algorithm
Comparison of the K-Means and MiniBatchKMeans clustering algorithms
Comparison of the K-Means and MiniBatchKMeans clustering algorithms
Adjustment for chance in clustering performance evaluation
Adjustment for chance in clustering performance evaluation