WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

UnitStep [x]

represents the unit step function, equal to 0 for and 1 for .

UnitStep [x1,x2,]

represents the multidimensional unit step function which is 1 only if none of the are negative.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Function Properties  
Differentiation and Integration  
Integral Transforms  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

UnitStep [x]

represents the unit step function, equal to 0 for and 1 for .

UnitStep [x1,x2,]

represents the multidimensional unit step function which is 1 only if none of the are negative.

Details

  • Some transformations are done automatically when UnitStep appears in a product of terms.
  • UnitStep provides a convenient way to represent piecewise continuous functions.
  • UnitStep has attribute Orderless .
  • For exact numeric quantities, UnitStep internally uses numerical approximations to establish its result. This process can be affected by the setting of the global variable $MaxExtraPrecision .
  • UnitStep [] is 1.
  • UnitStep automatically threads over lists. »

Examples

open all close all

Basic Examples  (4)

Evaluate numerically:

Plot in one dimension:

Plot in two dimensions:

UnitStep is a piecewise function:

Scope  (34)

Numerical Evaluation  (6)

Evaluate numerically:

UnitStep always returns an exact result:

Evaluate efficiently at high precision:

UnitStep can deal with realvalued intervals:

Compute the elementwise values of an array using automatic threading:

Or compute the matrix UnitStep function using MatrixFunction :

Compute average-case statistical intervals using Around :

Specific Values  (4)

Value at zero:

Value at infinity:

Evaluate for symbolic parameters:

Find a value of x for which the UnitStep [x]=1:

Visualization  (4)

Plot the UnitStep function:

Visualize shifted UnitStep functions:

Visualize the composition of UnitStep with a periodic function:

Plot UnitStep in three dimensions:

Function Properties  (10)

Function domain of UnitStep :

It is restricted to real inputs:

Function range of UnitStep :

UnitStep has a jump discontinuity at the point :

UnitStep is not an analytic function:

It has both singularities and discontinuities:

UnitStep is nondecreasing:

UnitStep is not injective:

UnitStep is not surjective:

UnitStep is non-negative:

UnitStep is neither convex nor concave:

TraditionalForm formatting:

Differentiation and Integration  (6)

First derivative with respect to x:

All higher-order derivatives the same:

First derivative with respect to z:

Compute the indefinite integral using Integrate :

Verify the anti-derivative away from the singular point:

Definite integral:

Integral over an infinite domain:

Integral Transforms  (4)

FourierTransform of UnitStep :

FourierSeries :

Find the LaplaceTransform of UnitStep :

The convolution of UnitStep with itself:

Applications  (8)

Generate a square wave:

Compute a step response for a continuous-time system:

Using transform methods:

Compute a step response for a discrete-time system:

Using transform methods:

Solve the timeindependent Schrödinger equation with piecewise analytic potential:

This gives the probability of the random variable being in the interval :

Here is the resulting probability plotted:

Construct the Walsh function:

Define a BoseEinstein and a MaxwellBoltzmann distribution function with UnitStep and Exp :

Plot the distributions:

Find the representation of a mathematical expression with UnitStep in terms of FoxH :

Properties & Relations  (4)

The derivative of UnitStep is a piecewise function:

The derivative of HeavisideTheta is a distribution:

Expand into UnitStep of linear factors:

Convert into Piecewise :

Integrate over finite and infinite domains:

Possible Issues  (3)

Symbolic preprocessing of functions containing UnitStep can be timeconsuming:

Limit does not give UnitStep as a limit of smooth functions:

Differentiating Abs does not yield UnitStep :

Use RealAbs to get a derivative of absolute value on the reals:

But for the origin, where the derivative does not exist, this is equivalent to an expression in UnitStep :

History

Introduced in 1999 (4.0) | Updated in 2007 (6.0)

Wolfram Research (1999), UnitStep, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitStep.html (updated 2007).

Text

Wolfram Research (1999), UnitStep, Wolfram Language function, https://reference.wolfram.com/language/ref/UnitStep.html (updated 2007).

CMS

Wolfram Language. 1999. "UnitStep." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2007. https://reference.wolfram.com/language/ref/UnitStep.html.

APA

Wolfram Language. (1999). UnitStep. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/UnitStep.html

BibTeX

@misc{reference.wolfram_2025_unitstep, author="Wolfram Research", title="{UnitStep}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/UnitStep.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_unitstep, organization={Wolfram Research}, title={UnitStep}, year={2007}, url={https://reference.wolfram.com/language/ref/UnitStep.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /