WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

LogisticSigmoid [z]

gives the logistic sigmoid function.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Function Representations  
Applications  
See Also
Related Guides
Related Links
History
Cite this Page

LogisticSigmoid [z]

gives the logistic sigmoid function.

Details

Examples

open all close all

Basic Examples  (5)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

The expansion of the function:

Scope  (36)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around :

Compute the elementwise values of an array using automatic threading:

Or compute the matrix LogisticSigmoid function using MatrixFunction :

Specific Values  (4)

The value of LogisticSigmoid at 2 πI n for integer n is 1/2:

Values at infinity:

Simple exact values are generated automatically:

More complicated cases require explicit use of FunctionExpand :

Find a value of for which the TemplateBox[{x}, LogisticSigmoid]=0.8` using Solve :

Substitute in the result:

Visualize the result:

Visualization  (3)

Plot the LogisticSigmoid [x] function:

Plot the real part of TemplateBox[{z}, LogisticSigmoid]:

Plot the imaginary part of TemplateBox[{z}, LogisticSigmoid]:

Polar plot with TemplateBox[{phi}, LogisticSigmoid]:

Function Properties  (10)

LogisticSigmoid is defined for all real and complex values:

LogisticSigmoid achieves all values between 0 and 1 on the reals:

The range for complex values:

LogisticSigmoid has the mirror property TemplateBox[{{z, }}, LogisticSigmoid]=TemplateBox[{z}, LogisticSigmoid]:

LogisticSigmoid is an analytic function of x:

It has no singularities or discontinuities:

LogisticSigmoid is nondecreasing:

LogisticSigmoid is injective:

LogisticSigmoid is not surjective:

LogisticSigmoid is non-negative:

LogisticSigmoid is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (3)

First derivative with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z:

Formula for the ^(th) derivative with respect to z:

Integration  (3)

Compute the indefinite integral using Integrate :

Verify the anti-derivative:

Definite integral:

More integrals:

Series Expansions  (3)

Find the Taylor expansion using Series :

Plots of the first three approximations around :

Find the series expansion at Infinity :

Taylor expansion at a generic point:

Function Representations  (4)

LogisticSigmoid can be represented in terms of Exp :

Series representation:

LogisticSigmoid can be represented in terms of MeijerG :

LogisticSigmoid obeys the logistic differential equation :

Applications  (1)

Write a specific solution to the dimensionless logistic equation using LogisticSigmoid :

See Also

Exp   LogisticDistribution   UnitStep   HeavisideTheta

Function Repository: Logit   SmoothStep   RationalSmoothStep

Wolfram Research (2014), LogisticSigmoid, Wolfram Language function, https://reference.wolfram.com/language/ref/LogisticSigmoid.html.

Text

Wolfram Research (2014), LogisticSigmoid, Wolfram Language function, https://reference.wolfram.com/language/ref/LogisticSigmoid.html.

CMS

Wolfram Language. 2014. "LogisticSigmoid." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LogisticSigmoid.html.

APA

Wolfram Language. (2014). LogisticSigmoid. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LogisticSigmoid.html

BibTeX

@misc{reference.wolfram_2025_logisticsigmoid, author="Wolfram Research", title="{LogisticSigmoid}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/LogisticSigmoid.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_logisticsigmoid, organization={Wolfram Research}, title={LogisticSigmoid}, year={2014}, url={https://reference.wolfram.com/language/ref/LogisticSigmoid.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /