WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

SoftmaxLayer []

represents a softmax net layer.

SoftmaxLayer [n]

represents a softmax net layer that uses level n as the normalization dimension.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
Neat Examples  
See Also
Tech Notes
Related Guides
History
Cite this Page

SoftmaxLayer []

represents a softmax net layer.

SoftmaxLayer [n]

represents a softmax net layer that uses level n as the normalization dimension.

Details and Options

  • SoftmaxLayer [][input] explicitly computes the output for input.
  • SoftmaxLayer [][{input1,input2,}] explicitly computes outputs for each of the inputi.
  • When given a NumericArray as input, the output will be a NumericArray .
  • SoftmaxLayer is typically used inside NetChain , NetGraph , etc. to normalize the output of other layers in order to use them as class probabilities for classification tasks.
  • SoftmaxLayer can operate on arrays that contain "Varying" dimensions.
  • SoftmaxLayer exposes the following ports for use in NetGraph etc.:
  • "Input" a numerical array of dimensions d1×d2××dn
    "Output" a numerical array of dimensions d1×d2××dn
  • When it cannot be inferred from other layers in a larger net, the option "Input"->n can be used to fix the input dimensions of SoftmaxLayer .
  • SoftmaxLayer [] is equivalent to SoftmaxLayer [-1].
  • SoftmaxLayer effectively normalizes the exponential of the input array, producing vectors that sum to 1. For the default level of -1, the innermost dimension is used as the normalization dimension.
  • When SoftmaxLayer [-1] is applied to a vector v, it produces the vector Normalize [Exp [v],Total ]. When applied to an array of higher dimension, it is mapped onto level -1.
  • When SoftmaxLayer [n] is applied to a k-dimensional input array x_(d_(1) ... d_(k)), it produces the array , where n is the summed-over index of x.
  • SoftmaxLayer [,"Input"shape] allows the shape of the input to be specified. Possible forms for shape are:
  • n a vector of size n
    {d1,d2,} an array of dimensions d1×d2×
    {"Varying",d2,d3,} an array whose first dimension is variable and remaining dimensions are d2×d3×
  • Options [SoftmaxLayer] gives the list of default options to construct the layer. Options [SoftmaxLayer[]] gives the list of default options to evaluate the layer on some data.
  • Information [SoftmaxLayer[]] gives a report about the layer.
  • Information [SoftmaxLayer[],prop] gives the value of the property prop of SoftmaxLayer []. Possible properties are the same as for NetGraph .

Examples

open all close all

Basic Examples  (2)

Create a SoftmaxLayer :

Create a SoftmaxLayer that takes a vector of length 5 as input:

Apply the layer to an input vector:

The elements of the result sum to 1:

Scope  (5)

Create a SoftmaxLayer that takes a matrix of dimensions 3×2 as input:

Apply the layer to a matrix:

Each row of the matrix is normalized:

Create a SoftmaxLayer that uses the first dimension as the normalization dimension:

Apply the layer to a matrix:

Create a SoftmaxLayer that normalizes over a variable-length dimension:

Apply it to sequences of different lengths:

SoftmaxLayer threads over a batch of inputs:

Create a SoftmaxLayer that uses a NetDecoder to interpret the output as class probabilities:

Apply the layer to data:

Interpret the outputs of the softmax layer as probabilities:

Properties & Relations  (3)

SoftmaxLayer [-1] computes the following:

Evaluate on an input:

Evaluate on a matrix:

The dimension used as the normalization dimension cannot be 1, as this always normalizes to a constant array:

SoftmaxLayer cannot accept symbolic inputs:

Neat Examples  (1)

Create a set of three instances of SoftmaxLayer that take and return an RGB image, but that normalize on the color channel dimension, the height and the width dimension, respectively:

Apply the three layers to a single test image:

Wolfram Research (2016), SoftmaxLayer, Wolfram Language function, https://reference.wolfram.com/language/ref/SoftmaxLayer.html (updated 2018).

Text

Wolfram Research (2016), SoftmaxLayer, Wolfram Language function, https://reference.wolfram.com/language/ref/SoftmaxLayer.html (updated 2018).

CMS

Wolfram Language. 2016. "SoftmaxLayer." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2018. https://reference.wolfram.com/language/ref/SoftmaxLayer.html.

APA

Wolfram Language. (2016). SoftmaxLayer. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SoftmaxLayer.html

BibTeX

@misc{reference.wolfram_2025_softmaxlayer, author="Wolfram Research", title="{SoftmaxLayer}", year="2018", howpublished="\url{https://reference.wolfram.com/language/ref/SoftmaxLayer.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_softmaxlayer, organization={Wolfram Research}, title={SoftmaxLayer}, year={2018}, url={https://reference.wolfram.com/language/ref/SoftmaxLayer.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /