WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Normalize [v]

gives the normalized form of a vector v.

Normalize [z]

gives the normalized form of a complex number z.

Normalize [expr,f]

normalizes with respect to the norm function f.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Generalizations & Extensions  
Applications  
Properties & Relations  
See Also
Tech Notes
Related Guides
History
Cite this Page

Normalize [v]

gives the normalized form of a vector v.

Normalize [z]

gives the normalized form of a complex number z.

Normalize [expr,f]

normalizes with respect to the norm function f.

Details

  • Normalize [v] is effectively v/Norm [v], except that zero vectors are returned unchanged.
  • Except in the case of zero vectors, Normalize [v] returns the unit vector in the direction of v.
  • For a complex number z, Normalize [z] returns z/Abs [z], except that Normalize [0] gives 0.
  • Normalize [expr,f] is effectively expr/f[expr], except when there are zeros in f[expr].

Examples

open all close all

Basic Examples  (1)

Scope  (5)

Symbolic vectors:

Use an arbitrary norm function:

v is a complexvalued vector:

Normalize using exact arithmetic:

Use machine arithmetic:

Use 24digit precision arithmetic:

Normalize a sparse vector:

Normalize a TimeSeries :

Generalizations & Extensions  (2)

Normalize a matrix by explicitly specifying a norm function:

Normalize a polynomial with respect to integration over the interval to :

Applications  (1)

m is a symmetric matrix with distinct eigenvalues:

Power method to find the eigenvector associated with the largest eigenvalue:

This is consistent (up to sign) with what Eigenvectors gives:

The eigenvalue can be found with Norm :

Properties & Relations  (1)

v is a random vector:

u is the normalization of v:

u is a unit vector in the direction of v:

See Also

Norm   Abs   Dot   Sign   UnitVector   Standardize

Function Repository: AssociationNormalize

Tech Notes

Wolfram Research (2007), Normalize, Wolfram Language function, https://reference.wolfram.com/language/ref/Normalize.html.

Text

Wolfram Research (2007), Normalize, Wolfram Language function, https://reference.wolfram.com/language/ref/Normalize.html.

CMS

Wolfram Language. 2007. "Normalize." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Normalize.html.

APA

Wolfram Language. (2007). Normalize. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Normalize.html

BibTeX

@misc{reference.wolfram_2025_normalize, author="Wolfram Research", title="{Normalize}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/Normalize.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_normalize, organization={Wolfram Research}, title={Normalize}, year={2007}, url={https://reference.wolfram.com/language/ref/Normalize.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /