WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

MathieuC [a,q,z]

gives the even Mathieu function with characteristic value a and parameter q.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Function Properties  
Differentiation  
Series Expansions  
Applications  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

MathieuC [a,q,z]

gives the even Mathieu function with characteristic value a and parameter q.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The Mathieu functions satisfy the equation .
  • For certain special arguments, MathieuC automatically evaluates to exact values.
  • MathieuC can be evaluated to arbitrary numerical precision.
  • MathieuC automatically threads over lists.

Examples

open all close all

Basic Examples  (4)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion about the origin:

Scope  (21)

Numerical Evaluation  (5)

Evaluate numerically to high precision:

The precision of the output tracks the precision of the input:

Evaluate for complex arguments and parameters:

Evaluate MathieuC efficiently at high precision:

MathieuC threads elementwise over lists:

Compute the elementwise values of an array:

Or compute the matrix MathieuC function using MatrixFunction :

Specific Values  (4)

Simple exact values are generated automatically:

Find a local maximum as the root of in the maximum's neighborhood:

MathieuC is an even function:

Heun functions can be reduced to Mathieu functions:

Visualization  (3)

Plot the MathieuC function:

Plot the real part of MathieuC for and :

Plot the imaginary part of MathieuC for and :

Plot the real part of MathieuC for and :

Plot the imaginary part of MathieuC for and :

Function Properties  (4)

MathieuC has singularities and discontinuities when the characteristic exponent is an integer:

is neither nondecreasing nor nonincreasing:

MathieuC is neither non-negative nor non-positive:

MathieuC is neither convex nor concave:

Differentiation  (3)

First derivative:

Higher derivatives:

Plot higher derivatives for and :

Plot higher derivatives for and :

Mathieu functions are the solutions to the differential equation :

Series Expansions  (2)

Taylor expansion:

Plot the first three approximations for MathieuC around :

Taylor expansion of MathieuC at a generic point:

Applications  (3)

This differential equation is solved in terms of MathieuC and MathieuS functions:

Solve the Schrödinger equation with periodic potential:

By the Bloch theorem, solutions are bounded provided is within an energy band. The energy gap corresponds to a range of where MathieuCharacteristicExponent has a non-vanishing imaginary part:

Solve the Laplace equation in an ellipse using separation of variables:

This finds a zero:

This plots an eigenfunction. It vanishes at the ellipse boundary:

Possible Issues  (1)

Machine-precision input is insufficient to give a correct answer:

Neat Examples  (1)

Phase space plots of the Mathieu function:

See Also

MathieuS   MathieuCPrime   MathieuCharacteristicA   HeunC   LameC

Function Repository: MathieuEllipticCos

History

Introduced in 1996 (3.0)

Wolfram Research (1996), MathieuC, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuC.html.

Text

Wolfram Research (1996), MathieuC, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuC.html.

CMS

Wolfram Language. 1996. "MathieuC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuC.html.

APA

Wolfram Language. (1996). MathieuC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuC.html

BibTeX

@misc{reference.wolfram_2025_mathieuc, author="Wolfram Research", title="{MathieuC}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MathieuC.html}", note=[Accessed: 16-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_mathieuc, organization={Wolfram Research}, title={MathieuC}, year={1996}, url={https://reference.wolfram.com/language/ref/MathieuC.html}, note=[Accessed: 16-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /