WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

MathieuCharacteristicExponent [a,q]

gives the characteristic exponent r for Mathieu functions with characteristic value a and parameter q.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Function Properties  
Applications  
Properties & Relations  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

MathieuCharacteristicExponent [a,q]

gives the characteristic exponent r for Mathieu functions with characteristic value a and parameter q.

Details

Examples

open all close all

Basic Examples  (3)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Scope  (15)

Numerical Evaluation  (7)

Evaluate numerically:

MathieuCharacteristicExponent threads elementwise over lists:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix MathieuCharacteristicExponent function using MatrixFunction :

Specific Values  (2)

Simple exact values are generated automatically:

Find a value of q for which MathieuCharacteristicExponent [3,q]=1.7:

Visualization  (3)

Plot the MathieuCharacteristicExponent function for integer parameters:

Plot the MathieuCharacteristicExponent function for noninteger parameters:

Plot the real part of MathieuCharacteristicExponent :

Plot the imaginary part of MathieuCharacteristicExponent :

Function Properties  (3)

MathieuCharacteristicExponent [3,x] is neither non-decreasing nor non-increasing:

MathieuCharacteristicExponent [3,x] is neither non-negative nor non-positive:

MathieuCharacteristicExponent [3,x] is neither convex nor concave:

Applications  (2)

Solve the Schrödinger equation with periodic potential:

By the Bloch theorem, solutions are bounded provided is within an energy band. The energy gap corresponds to a range of where MathieuCharacteristicExponent has a non-vanishing imaginary part:

This shows the stability diagram for the Mathieu equation:

Properties & Relations  (2)

The characteristic exponent and the characteristic are inverses of each other:

From the plot, you can see that MathieuCharacteristicExponent [x,0]=:

Neat Examples  (1)

This shows the band gaps in a periodic potential:

History

Introduced in 1996 (3.0)

Wolfram Research (1996), MathieuCharacteristicExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuCharacteristicExponent.html.

Text

Wolfram Research (1996), MathieuCharacteristicExponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MathieuCharacteristicExponent.html.

CMS

Wolfram Language. 1996. "MathieuCharacteristicExponent." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MathieuCharacteristicExponent.html.

APA

Wolfram Language. (1996). MathieuCharacteristicExponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MathieuCharacteristicExponent.html

BibTeX

@misc{reference.wolfram_2025_mathieucharacteristicexponent, author="Wolfram Research", title="{MathieuCharacteristicExponent}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/MathieuCharacteristicExponent.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_mathieucharacteristicexponent, organization={Wolfram Research}, title={MathieuCharacteristicExponent}, year={1996}, url={https://reference.wolfram.com/language/ref/MathieuCharacteristicExponent.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /