WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

Convolve [f,g,x,y]

gives the convolution with respect to x of the expressions f and g.

Convolve [f,g,{x1,x2,},{y1,y2,}]

gives the multidimensional convolution.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Univariate Convolution  
Multivariate Convolution  
Generalizations & Extensions  
Options  
Assumptions  
GenerateConditions  
Applications  
Properties & Relations  
Interactive Examples  
See Also
Related Guides
Related Links
History
Cite this Page

Convolve [f,g,x,y]

gives the convolution with respect to x of the expressions f and g.

Convolve [f,g,{x1,x2,},{y1,y2,}]

gives the multidimensional convolution.

Details and Options

  • Convolve is also known as Fourier convolution, acausal convolution or bilateral convolution.
  • The convolution of two functions and is given by .
  • The multidimensional convolution is given by .
  • The following options can be given:
  • Assumptions $Assumptions assumptions to make about parameters
    GenerateConditions False whether to generate conditions on parameters
    Method Automatic method to use
    PrincipalValue False whether to use principal value integrals

Examples

open all close all

Basic Examples  (3)

Convolve a function with DiracDelta :

Convolve two unit pulses:

Convolve two exponential functions and plot the result:

Scope  (5)

Univariate Convolution  (3)

The convolution gives the product integral of translates:

Elementary functions:

A convolution typically smooths the function:

For this family, they all have unit area:

Multivariate Convolution  (2)

The convolution gives the product integral of translates:

Convolution with multivariate delta functions acts as a point operator:

Convolution with a function of bounded support acts as a filter:

Generalizations & Extensions  (1)

Multiplication by UnitStep effectively gives the convolution on a finite interval:

Options  (2)

Assumptions  (1)

Specify assumptions on a variable or parameter:

GenerateConditions  (1)

Generate conditions for the range of a parameter:

Applications  (5)

Obtain a particular solution for a linear ordinary differential equation using convolution:

Obtain the step response of a linear, time-invariant system given its impulse response h:

The step response of the system:

Convolving the PDF of UniformDistribution with itself gives a TriangularDistribution :

UniformSumDistribution [n] is the convolution of n UniformDistribution [] PDFs:

ErlangDistribution [k,λ] is the convolution of k ExponentialDistribution [λ] PDFs:

Properties & Relations  (7)

Convolve computes an integral over the real line:

Convolution with DiracDelta gives the function itself:

Scaling:

Commutativity:

Distributivity:

The Laplace transform of a causal convolution is a product of the individual transforms:

The Fourier transform of a convolution is related to the product of the individual transforms:

Interactive Examples  (1)

This demonstrates the convolution operation :

Wolfram Research (2008), Convolve, Wolfram Language function, https://reference.wolfram.com/language/ref/Convolve.html.

Text

Wolfram Research (2008), Convolve, Wolfram Language function, https://reference.wolfram.com/language/ref/Convolve.html.

CMS

Wolfram Language. 2008. "Convolve." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/Convolve.html.

APA

Wolfram Language. (2008). Convolve. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Convolve.html

BibTeX

@misc{reference.wolfram_2025_convolve, author="Wolfram Research", title="{Convolve}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/Convolve.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_convolve, organization={Wolfram Research}, title={Convolve}, year={2008}, url={https://reference.wolfram.com/language/ref/Convolve.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /