WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

ArraySimplify [expr]

performs a sequence of array transformations on expr and returns the simplest form it finds.

ArraySimplify [expr,assum]

simplifies using assumptions assum.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Multilinear Operations  
Array Operations  
Matrix Operations  
Vector Operations  
Options  
Assumptions  
Applications  
Properties & Relations  
Possible Issues  
See Also
Related Guides
History
Cite this Page

ArraySimplify [expr]

performs a sequence of array transformations on expr and returns the simplest form it finds.

ArraySimplify [expr,assum]

simplifies using assumptions assum.

Details and Options

Examples

open all close all

Basic Examples  (3)

Simplify symbolic array expressions:

Use assumptions to specify dimensionality of variables:

Simplify expressions involving MatrixSymbol and VectorSymbol :

Scope  (42)

Multilinear Operations  (12)

Elementwise products of linear combinations:

Dot products of linear combinations:

ArrayDot products of linear combinations:

TensorProduct of linear combinations:

KroneckerProduct of linear combinations:

TensorWedge of linear combinations:

Cross product of linear combinations:

Tr of linear combinations:

TensorContract of linear combinations:

HodgeDual of linear combinations:

Transpose of linear combinations:

ConjugateTranspose of linear combinations:

Array Operations  (10)

Transpose , Conjugate and ConjugateTranspose :

Simplifications of TensorProduct :

Simplifications of TensorWedge :

Tr of Transpose , Conjugate and ConjugateTranspose :

Conjugate of array operations:

Conjugate and ConjugateTranspose of elementary functions:

Transpose of Listable mathematical functions:

Dot product of TensorProduct :

Commutativity of scalar-valued ArrayDot :

Simplifications of SymbolicIdentityArray :

Matrix Operations  (16)

Inverse :

PseudoInverse :

Adjugate :

MatrixPower :

Inverse , MatrixPower , PseudoInverse and Adjugate of a scalar multiple:

Inverse and Adjugate of Dot products:

Transpose , Conjugate and ConjugateTranspose of Inverse , Adjugate and PseudoInverse :

Transpose , Conjugate and ConjugateTranspose of MatrixPower :

Transpose , Conjugate and ConjugateTranspose of MatrixExp :

Transpose and ConjugateTranspose of Dot products:

Negative exponent MatrixPower of a Dot product:

Tr of Dot products:

Det composed with matrix operations:

Det of Dot products:

Matrix operations with KroneckerProduct arguments:

MatrixExp :

Vector Operations  (4)

Transpose of a vector:

Dot products of vectors and matrices:

Transpose of KroneckerProduct :

Cross products:

Options  (1)

Assumptions  (1)

Specify assumptions using the assumptions argument:

Use the Assumptions option:

Use Assuming to specify default assumptions:

Applications  (1)

Derive a formula for the gradient of the least-squares cost function:

Define the cost function:

Compute the gradient:

Simplify the gradient:

Properties & Relations  (2)

ArraySimplify performs only array transformations:

Simplify performs other transformations as well:

Use Assuming to propagate assumptions:

Possible Issues  (1)

Symbolic arguments of unspecified dimensionality are not assumed to be scalars:

Use assumptions to specify that c is a scalar:

Wolfram Research (2025), ArraySimplify, Wolfram Language function, https://reference.wolfram.com/language/ref/ArraySimplify.html.

Text

Wolfram Research (2025), ArraySimplify, Wolfram Language function, https://reference.wolfram.com/language/ref/ArraySimplify.html.

CMS

Wolfram Language. 2025. "ArraySimplify." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ArraySimplify.html.

APA

Wolfram Language. (2025). ArraySimplify. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ArraySimplify.html

BibTeX

@misc{reference.wolfram_2025_arraysimplify, author="Wolfram Research", title="{ArraySimplify}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/ArraySimplify.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_arraysimplify, organization={Wolfram Research}, title={ArraySimplify}, year={2025}, url={https://reference.wolfram.com/language/ref/ArraySimplify.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /