WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

SymbolicIdentityArray [{n1,n2,}]

represents an n1×n2××n1×n2× array with elements ai1,i2,,j1,j2, equal to 1 if all ikjk, and 0 otherwise.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Properties & Relations  
See Also
Related Guides
History
Cite this Page

SymbolicIdentityArray [{n1,n2,}]

represents an n1×n2××n1×n2× array with elements ai1,i2,,j1,j2, equal to 1 if all ikjk, and 0 otherwise.

Details

  • Valid dimension specifications ni in SymbolicIdentityArray [{n1,n2,}] are positive integers. It is also possible to work with symbolic dimension specifications.
  • SymbolicIdentityArray may be produced by differentiation involving ArraySymbol objects.
  • For an array a=SymbolicIdentityArray[{n1,n2,}] with positive integer dimension specifications ni, Normal [a] converts a to an explicit array. SparseArray [a] converts a to a SparseArray .

Examples

open all close all

Basic Examples  (2)

The derivative of a symbolic array variable with respect to itself is a SymbolicIdentityArray :

Create a SymbolicIdentityArray with explicit numeric dimensions:

Convert a to an explicit array:

Convert a to a SparseArray :

Scope  (2)

Arithmetic operations:

Array operations:

Properties & Relations  (5)

SymbolicIdentityArray gives a symbolic representation of the array:

Use Normal to convert a to an explicit array:

IdentityMatrix [n] gives an explicit version of SymbolicIdentityArray [{n}]:

SymbolicIdentityArray is a special case of SymbolicDeltaProductArray :

The derivative of a symbolic array variable with respect to itself is a SymbolicIdentityArray :

SymbolicIdentityArray objects are identity elements for ArrayDot :

Wolfram Research (2024), SymbolicIdentityArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.

Text

Wolfram Research (2024), SymbolicIdentityArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.

CMS

Wolfram Language. 2024. "SymbolicIdentityArray." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html.

APA

Wolfram Language. (2024). SymbolicIdentityArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html

BibTeX

@misc{reference.wolfram_2025_symbolicidentityarray, author="Wolfram Research", title="{SymbolicIdentityArray}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html}", note=[Accessed: 17-November-2025]}

BibLaTeX

@online{reference.wolfram_2025_symbolicidentityarray, organization={Wolfram Research}, title={SymbolicIdentityArray}, year={2024}, url={https://reference.wolfram.com/language/ref/SymbolicIdentityArray.html}, note=[Accessed: 17-November-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /