コンテンツにスキップ
Wikipedia

円周率を含む数式

出典: フリー百科事典『ウィキペディア(Wikipedia)』
円周率
使用
特性
数値
人物(日本人)
人物
歴史
文化
関連項目

円周率を含む数式 (えんしゅうりつをふくむすうしき)を分野別にまとめる。数式自体または円周率、円周率の近似のいずれかの記事において重要性が確立されているものだけを述べる。

ユークリッド幾何学

[編集 ]
円の外周(円周) C直径 d の関係
C = π d {\displaystyle C=\pi d} {\displaystyle C=\pi d}
円の面積 A半径 r の関係
A = π r 2 {\displaystyle A=\pi r^{2}} {\displaystyle A=\pi r^{2}}
体積 V と半径 r の関係
V = 4 3 π r 3 {\displaystyle V={\frac {4}{3}}\pi r^{3}} {\displaystyle V={\frac {4}{3}}\pi r^{3}}
球の表面積 S と半径 r の関係
S = 4 π r 2 {\displaystyle S=4\pi r^{2}} {\displaystyle S=4\pi r^{2}}

物理学

[編集 ]
宇宙定数
Λ = 8 π G 3 c 2 ρ {\displaystyle \Lambda ={{8\pi G} \over {3c^{2}}}\rho } {\displaystyle \Lambda ={{8\pi G} \over {3c^{2}}}\rho }
ハイゼンベルクの不確定性原理
Δ x Δ p h 4 π {\displaystyle \Delta x,円\Delta p\geq {\frac {h}{4\pi }}} {\displaystyle \Delta x,円\Delta p\geq {\frac {h}{4\pi }}}
一般相対性理論アインシュタイン方程式
R μ ν 1 2 g μ ν R + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }} {\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }}
クーロンの法則
F = | q 1 q 2 | 4 π ε 0 r 2 {\displaystyle F={\frac {|q_{1}q_{2}|}{4\pi \varepsilon _{0}r^{2}}}} {\displaystyle F={\frac {|q_{1}q_{2}|}{4\pi \varepsilon _{0}r^{2}}}}
振幅が小さい範囲での振り子周期
T 2 π L g {\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}} {\displaystyle T\approx 2\pi {\sqrt {\frac {L}{g}}}}
座屈のオイラーの式
F = π 2 E I L 2 {\displaystyle F={\frac {\pi ^{2}EI}{L^{2}}}} {\displaystyle F={\frac {\pi ^{2}EI}{L^{2}}}}

円周率を得るための数式

[編集 ]

積分

[編集 ]
sech ( x ) d x = π {\displaystyle \int _{-\infty }^{\infty }\operatorname {sech} (x),円dx=\pi } {\displaystyle \int _{-\infty }^{\infty }\operatorname {sech} (x),円dx=\pi }
t e 1 / 2 t 2 x 2 + x t d x d t = t e t 2 1 / 2 x 2 + x t d x d t = π {\displaystyle \int _{-\infty }^{\infty }\int _{t}^{\infty }e^{-1/2t^{2}-x^{2}+xt},円dx,円dt=\int _{-\infty }^{\infty }\int _{t}^{\infty }e^{-t^{2}-1/2x^{2}+xt},円dx,円dt=\pi } {\displaystyle \int _{-\infty }^{\infty }\int _{t}^{\infty }e^{-1/2t^{2}-x^{2}+xt},円dx,円dt=\int _{-\infty }^{\infty }\int _{t}^{\infty }e^{-t^{2}-1/2x^{2}+xt},円dx,円dt=\pi }
1 1 1 x 2 d x = π 2 {\displaystyle \int _{-1}^{1}{\sqrt {1-x^{2}}},円dx={\frac {\pi }{2}}} {\displaystyle \int _{-1}^{1}{\sqrt {1-x^{2}}},円dx={\frac {\pi }{2}}}
0 1 1 1 + x 2 d x = π 4 {\displaystyle \int _{0}^{1}{1 \over 1+x^{2}},円dx={\frac {\pi }{4}}} {\displaystyle \int _{0}^{1}{1 \over 1+x^{2}},円dx={\frac {\pi }{4}}}
1 1 d x 1 x 2 = π {\displaystyle \int _{-1}^{1}{\frac {dx}{\sqrt {1-x^{2}}}}=\pi } {\displaystyle \int _{-1}^{1}{\frac {dx}{\sqrt {1-x^{2}}}}=\pi }
d x 1 + x 2 = π {\displaystyle \int _{-\infty }^{\infty }{\frac {dx}{1+x^{2}}}=\pi } {\displaystyle \int _{-\infty }^{\infty }{\frac {dx}{1+x^{2}}}=\pi } (逆正接関数)
e x 2 d x = π {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}},円dx={\sqrt {\pi }}} {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}},円dx={\sqrt {\pi }}}  (ガウス積分)
d z z = 2 π i {\displaystyle \oint {\frac {dz}{z}}=2\pi i} {\displaystyle \oint {\frac {dz}{z}}=2\pi i} (コーシーの積分定理)
sin x x d x = π {\displaystyle \int _{-\infty }^{\infty }{\frac {\sin x}{x}},円dx=\pi } {\displaystyle \int _{-\infty }^{\infty }{\frac {\sin x}{x}},円dx=\pi }
0 1 x 4 ( 1 x ) 4 1 + x 2 d x = 22 7 π {\displaystyle \int _{0}^{1}{x^{4}(1-x)^{4} \over 1+x^{2}},円dx={22 \over 7}-\pi } {\displaystyle \int _{0}^{1}{x^{4}(1-x)^{4} \over 1+x^{2}},円dx={22 \over 7}-\pi } (円周率が22/7より小さいことの証明)

効率的な級数

[編集 ]
k = 0 k ! ( 2 k + 1 ) ! ! = k = 0 2 k k ! 2 ( 2 k + 1 ) ! = π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {k!}{(2k+1)!!}}=\sum _{k=0}^{\infty }{\frac {2^{k}k!^{2}}{(2k+1)!}}={\frac {\pi }{2}}} {\displaystyle \sum _{k=0}^{\infty }{\frac {k!}{(2k+1)!!}}=\sum _{k=0}^{\infty }{\frac {2^{k}k!^{2}}{(2k+1)!}}={\frac {\pi }{2}}}
12 k = 0 ( 1 ) k ( 6 k ) ! ( 13591409 + 545140134 k ) ( 3 k ) ! ( k ! ) 3 640320 3 k + 3 / 2 = 1 π {\displaystyle 12\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(13591409+545140134k)}{(3k)!(k!)^{3}640320^{3k+3/2}}}={\frac {1}{\pi }}} {\displaystyle 12\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(13591409+545140134k)}{(3k)!(k!)^{3}640320^{3k+3/2}}}={\frac {1}{\pi }}} (Chudnovsky algorithm)
2 2 9801 k = 0 ( 4 k ) ! ( 1103 + 26390 k ) ( k ! ) 4 396 4 k = 1 π {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{k=0}^{\infty }{\frac {(4k)!(1103+26390k)}{(k!)^{4}396^{4k}}}={\frac {1}{\pi }}} {\displaystyle {\frac {2{\sqrt {2}}}{9801}}\sum _{k=0}^{\infty }{\frac {(4k)!(1103+26390k)}{(k!)^{4}396^{4k}}}={\frac {1}{\pi }}} (シュリニヴァーサ・ラマヌジャン)
12 ( 1249638720 + 159999840 61 ) 3 n = 0 ( 1 ) n ( 6 n ) ! ( 1657145277365 + 212175710912 61 + ( 107578229802750 + 3773980892672 61 ) n ) ( 3 n ) ! ( n ! ) 3 ( 1249638720 + 159999840 61 ) n = 1 π {\displaystyle {\frac {12}{\sqrt {(1249638720+159999840{\sqrt {61}})^{3}}}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}(6n)!(1657145277365+212175710912{\sqrt {61}}+(107578229802750+3773980892672{\sqrt {61}})n)}{(3n)!(n!)^{3}(1249638720+159999840{\sqrt {61}})^{n}}}={\frac {1}{\pi }}} {\displaystyle {\frac {12}{\sqrt {(1249638720+159999840{\sqrt {61}})^{3}}}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}(6n)!(1657145277365+212175710912{\sqrt {61}}+(107578229802750+3773980892672{\sqrt {61}})n)}{(3n)!(n!)^{3}(1249638720+159999840{\sqrt {61}})^{n}}}={\frac {1}{\pi }}}(Borwein)


3 6 5 k = 0 ( ( 4 k ) ! ) 2 ( 6 k ) ! 9 k + 1 ( 12 k ) ! ( 2 k ) ! ( 127169 12 k + 1 1070 12 k + 5 131 12 k + 7 + 2 12 k + 11 ) = π {\displaystyle {\frac {\sqrt {3}}{6^{5}}}\sum _{k=0}^{\infty }{\frac {((4k)!)^{2}(6k)!}{9^{k+1}(12k)!(2k)!}}\left({\frac {127169}{12k+1}}-{\frac {1070}{12k+5}}-{\frac {131}{12k+7}}+{\frac {2}{12k+11}}\right)=\pi } {\displaystyle {\frac {\sqrt {3}}{6^{5}}}\sum _{k=0}^{\infty }{\frac {((4k)!)^{2}(6k)!}{9^{k+1}(12k)!(2k)!}}\left({\frac {127169}{12k+1}}-{\frac {1070}{12k+5}}-{\frac {131}{12k+7}}+{\frac {2}{12k+11}}\right)=\pi }[1]

以下は、円周率の任意の桁を2進数で求められる効率的な数式である。

k = 0 1 16 k ( 4 8 k + 1 2 8 k + 4 1 8 k + 5 1 8 k + 6 ) = π {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{16^{k}}}\left({\frac {4}{8k+1}}-{\frac {2}{8k+4}}-{\frac {1}{8k+5}}-{\frac {1}{8k+6}}\right)=\pi } {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{16^{k}}}\left({\frac {4}{8k+1}}-{\frac {2}{8k+4}}-{\frac {1}{8k+5}}-{\frac {1}{8k+6}}\right)=\pi } (ベイリー=ボールウェイン=プラウフの公式)
1 2 6 n = 0 ( 1 ) n 2 10 n ( 2 5 4 n + 1 1 4 n + 3 + 2 8 10 n + 1 2 6 10 n + 3 2 2 10 n + 5 2 2 10 n + 7 + 1 10 n + 9 ) = π {\displaystyle {\frac {1}{2^{6}}}\sum _{n=0}^{\infty }{\frac {{(-1)}^{n}}{2^{10n}}}\left(-{\frac {2^{5}}{4n+1}}-{\frac {1}{4n+3}}+{\frac {2^{8}}{10n+1}}-{\frac {2^{6}}{10n+3}}-{\frac {2^{2}}{10n+5}}-{\frac {2^{2}}{10n+7}}+{\frac {1}{10n+9}}\right)=\pi } {\displaystyle {\frac {1}{2^{6}}}\sum _{n=0}^{\infty }{\frac {{(-1)}^{n}}{2^{10n}}}\left(-{\frac {2^{5}}{4n+1}}-{\frac {1}{4n+3}}+{\frac {2^{8}}{10n+1}}-{\frac {2^{6}}{10n+3}}-{\frac {2^{2}}{10n+5}}-{\frac {2^{2}}{10n+7}}+{\frac {1}{10n+9}}\right)=\pi }

他の級数

[編集 ]
ζ ( 2 ) = 1 1 2 + 1 2 2 + 1 3 2 + 1 4 2 + = π 2 6 {\displaystyle \zeta (2)={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}} {\displaystyle \zeta (2)={\frac {1}{1^{2}}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{6}}} (バーゼルの問題リーマンゼータ関数)
ζ ( 4 ) = 1 1 4 + 1 2 4 + 1 3 4 + 1 4 4 + = π 4 90 {\displaystyle \zeta (4)={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}} {\displaystyle \zeta (4)={\frac {1}{1^{4}}}+{\frac {1}{2^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{4^{4}}}+\cdots ={\frac {\pi ^{4}}{90}}}
ζ ( 2 n ) = k = 1 1 k 2 n = 1 1 2 n + 1 2 2 n + 1 3 2 n + 1 4 2 n + = ( 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}},円={\frac {1}{1^{2n}}}+{\frac {1}{2^{2n}}}+{\frac {1}{3^{2n}}}+{\frac {1}{4^{2n}}}+\cdots =(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}} {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}},円={\frac {1}{1^{2n}}}+{\frac {1}{2^{2n}}}+{\frac {1}{3^{2n}}}+{\frac {1}{4^{2n}}}+\cdots =(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}} , ただし B2nベルヌーイ数)
n = 1 3 n 1 4 n ζ ( n + 1 ) = π {\displaystyle \sum _{n=1}^{\infty }{\frac {3^{n}-1}{4^{n}}},円\zeta (n+1)=\pi } {\displaystyle \sum _{n=1}^{\infty }{\frac {3^{n}-1}{4^{n}}},円\zeta (n+1)=\pi }[2]
n = 0 ( ( 1 ) n 2 n + 1 ) 1 = 1 1 1 3 + 1 5 1 7 + 1 9 = arctan 1 = π 4 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{1}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots =\arctan {1}={\frac {\pi }{4}}} {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{1}={\frac {1}{1}}-{\frac {1}{3}}+{\frac {1}{5}}-{\frac {1}{7}}+{\frac {1}{9}}-\cdots =\arctan {1}={\frac {\pi }{4}}} (ライプニッツ公式)
n = 1 ( 1 ) n + 1 n 2 = 1 1 2 1 2 2 + 1 3 2 1 4 2 + = π 2 12 {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}-{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{12}}} {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n^{2}}}={\frac {1}{1^{2}}}-{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}-{\frac {1}{4^{2}}}+\cdots ={\frac {\pi ^{2}}{12}}}
n = 1 1 ( 2 n ) 2 = 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + = π 2 24 {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{(2n)^{2}}}={\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}+{\frac {1}{6^{2}}}+{\frac {1}{8^{2}}}+\cdots ={\frac {\pi ^{2}}{24}}} {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{(2n)^{2}}}={\frac {1}{2^{2}}}+{\frac {1}{4^{2}}}+{\frac {1}{6^{2}}}+{\frac {1}{8^{2}}}+\cdots ={\frac {\pi ^{2}}{24}}}
n = 0 ( ( 1 ) n 2 n + 1 ) 2 = 1 1 2 + 1 3 2 + 1 5 2 + 1 7 2 + = π 2 8 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{2}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots ={\frac {\pi ^{2}}{8}}} {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{2}={\frac {1}{1^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+\cdots ={\frac {\pi ^{2}}{8}}}
n = 0 ( ( 1 ) n 2 n + 1 ) 3 = 1 1 3 1 3 3 + 1 5 3 1 7 3 + = π 3 32 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{3}={\frac {1}{1^{3}}}-{\frac {1}{3^{3}}}+{\frac {1}{5^{3}}}-{\frac {1}{7^{3}}}+\cdots ={\frac {\pi ^{3}}{32}}} {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{3}={\frac {1}{1^{3}}}-{\frac {1}{3^{3}}}+{\frac {1}{5^{3}}}-{\frac {1}{7^{3}}}+\cdots ={\frac {\pi ^{3}}{32}}}
n = 0 ( ( 1 ) n 2 n + 1 ) 4 = 1 1 4 + 1 3 4 + 1 5 4 + 1 7 4 + = π 4 96 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{4}={\frac {1}{1^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{5^{4}}}+{\frac {1}{7^{4}}}+\cdots ={\frac {\pi ^{4}}{96}}} {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{4}={\frac {1}{1^{4}}}+{\frac {1}{3^{4}}}+{\frac {1}{5^{4}}}+{\frac {1}{7^{4}}}+\cdots ={\frac {\pi ^{4}}{96}}}
n = 0 ( ( 1 ) n 2 n + 1 ) 5 = 1 1 5 1 3 5 + 1 5 5 1 7 5 + = 5 π 5 1536 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{5}={\frac {1}{1^{5}}}-{\frac {1}{3^{5}}}+{\frac {1}{5^{5}}}-{\frac {1}{7^{5}}}+\cdots ={\frac {5\pi ^{5}}{1536}}} {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{5}={\frac {1}{1^{5}}}-{\frac {1}{3^{5}}}+{\frac {1}{5^{5}}}-{\frac {1}{7^{5}}}+\cdots ={\frac {5\pi ^{5}}{1536}}}
n = 0 ( ( 1 ) n 2 n + 1 ) 6 = 1 1 6 + 1 3 6 + 1 5 6 + 1 7 6 + = π 6 960 {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{6}={\frac {1}{1^{6}}}+{\frac {1}{3^{6}}}+{\frac {1}{5^{6}}}+{\frac {1}{7^{6}}}+\cdots ={\frac {\pi ^{6}}{960}}} {\displaystyle \sum _{n=0}^{\infty }{\left({\frac {(-1)^{n}}{2n+1}}\right)}^{6}={\frac {1}{1^{6}}}+{\frac {1}{3^{6}}}+{\frac {1}{5^{6}}}+{\frac {1}{7^{6}}}+\cdots ={\frac {\pi ^{6}}{960}}}
n = 0 1 ( 4 n + 1 ) ( 4 n + 3 ) = 1 1 3 + 1 5 7 + 1 9 11 + = π 8 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{(4n+1)(4n+3)}}={\frac {1}{1\cdot 3}}+{\frac {1}{5\cdot 7}}+{\frac {1}{9\cdot 11}}+\cdots ={\frac {\pi }{8}}} {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{(4n+1)(4n+3)}}={\frac {1}{1\cdot 3}}+{\frac {1}{5\cdot 7}}+{\frac {1}{9\cdot 11}}+\cdots ={\frac {\pi }{8}}}
π = 1 + 1 2 + 1 3 + 1 4 1 5 + 1 6 + 1 7 + 1 8 + 1 9 1 10 + 1 11 + 1 12 1 13 + {\displaystyle \pi ={1}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}-{\frac {1}{10}}+{\frac {1}{11}}+{\frac {1}{12}}-{\frac {1}{13}}+\cdots } {\displaystyle \pi ={1}+{\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{4}}-{\frac {1}{5}}+{\frac {1}{6}}+{\frac {1}{7}}+{\frac {1}{8}}+{\frac {1}{9}}-{\frac {1}{10}}+{\frac {1}{11}}+{\frac {1}{12}}-{\frac {1}{13}}+\cdots }   (オイラー、1748年)
この式では、最初の2つの項の後、符号は次のように決定される。分母が4m - 1で表される素数である場合、符号は正であり。分母が4m + 1で表される素数である場合、符号は負である。 合成数の場合、符号はその素因数分解した素数の符号の積に等しい[3]
また
n = 1 F 2 n n 2 ( 2 n n ) = 4 π 2 25 5 {\displaystyle \sum _{n=1}^{\infty }{\frac {F_{2n}}{n^{2}{\binom {2n}{n}}}}={\frac {4\pi ^{2}}{25{\sqrt {5}}}}} {\displaystyle \sum _{n=1}^{\infty }{\frac {F_{2n}}{n^{2}{\binom {2n}{n}}}}={\frac {4\pi ^{2}}{25{\sqrt {5}}}}}
ただし  F n {\displaystyle F_{n}} {\displaystyle F_{n}}n番目のフィボナッチ数

マチンの公式

[編集 ]
π 4 = arctan 1 {\displaystyle {\frac {\pi }{4}}=\arctan 1} {\displaystyle {\frac {\pi }{4}}=\arctan 1}
π 4 = arctan 1 2 + arctan 1 3 {\displaystyle {\frac {\pi }{4}}=\arctan {\frac {1}{2}}+\arctan {\frac {1}{3}}} {\displaystyle {\frac {\pi }{4}}=\arctan {\frac {1}{2}}+\arctan {\frac {1}{3}}}
π 4 = 2 arctan 1 2 arctan 1 7 {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{2}}-\arctan {\frac {1}{7}}} {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{2}}-\arctan {\frac {1}{7}}}
π 4 = 2 arctan 1 3 + arctan 1 7 {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{3}}+\arctan {\frac {1}{7}}} {\displaystyle {\frac {\pi }{4}}=2\arctan {\frac {1}{3}}+\arctan {\frac {1}{7}}}
π 4 = 4 arctan 1 5 arctan 1 239 {\displaystyle {\frac {\pi }{4}}=4\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}} {\displaystyle {\frac {\pi }{4}}=4\arctan {\frac {1}{5}}-\arctan {\frac {1}{239}}} (マチンの公式)
π 4 = 5 arctan 1 7 + 2 arctan 3 79 {\displaystyle {\frac {\pi }{4}}=5\arctan {\frac {1}{7}}+2\arctan {\frac {3}{79}}} {\displaystyle {\frac {\pi }{4}}=5\arctan {\frac {1}{7}}+2\arctan {\frac {3}{79}}}
π 4 = 6 arctan 1 8 + 2 arctan 1 57 + arctan 1 239 {\displaystyle {\frac {\pi }{4}}=6\arctan {\frac {1}{8}}+2\arctan {\frac {1}{57}}+\arctan {\frac {1}{239}}} {\displaystyle {\frac {\pi }{4}}=6\arctan {\frac {1}{8}}+2\arctan {\frac {1}{57}}+\arctan {\frac {1}{239}}}
π 4 = 12 arctan 1 49 + 32 arctan 1 57 5 arctan 1 239 + 12 arctan 1 110443 {\displaystyle {\frac {\pi }{4}}=12\arctan {\frac {1}{49}}+32\arctan {\frac {1}{57}}-5\arctan {\frac {1}{239}}+12\arctan {\frac {1}{110443}}} {\displaystyle {\frac {\pi }{4}}=12\arctan {\frac {1}{49}}+32\arctan {\frac {1}{57}}-5\arctan {\frac {1}{239}}+12\arctan {\frac {1}{110443}}}
π 4 = 44 arctan 1 57 + 7 arctan 1 239 12 arctan 1 682 + 24 arctan 1 12943 {\displaystyle {\frac {\pi }{4}}=44\arctan {\frac {1}{57}}+7\arctan {\frac {1}{239}}-12\arctan {\frac {1}{682}}+24\arctan {\frac {1}{12943}}} {\displaystyle {\frac {\pi }{4}}=44\arctan {\frac {1}{57}}+7\arctan {\frac {1}{239}}-12\arctan {\frac {1}{682}}+24\arctan {\frac {1}{12943}}}
π 2 = n = 0 arctan 1 F 2 n + 1 = arctan 1 1 + arctan 1 2 + arctan 1 5 + arctan 1 13 + {\displaystyle {\frac {\pi }{2}}=\sum _{n=0}^{\infty }\arctan {\frac {1}{F_{2n+1}}}=\arctan {\frac {1}{1}}+\arctan {\frac {1}{2}}+\arctan {\frac {1}{5}}+\arctan {\frac {1}{13}}+\cdots } {\displaystyle {\frac {\pi }{2}}=\sum _{n=0}^{\infty }\arctan {\frac {1}{F_{2n+1}}}=\arctan {\frac {1}{1}}+\arctan {\frac {1}{2}}+\arctan {\frac {1}{5}}+\arctan {\frac {1}{13}}+\cdots }

ただし  F n {\displaystyle F_{n}} {\displaystyle F_{n}} はn番目のフィボナッチ数。

級数

[編集 ]

円周率を含む級数[4]

π = 1 Z {\displaystyle \pi ={\frac {1}{Z}}} {\displaystyle \pi ={\frac {1}{Z}}} Z = n = 0 ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {((2n)!)^{3}(42n+5)}{(n!)^{6}{16}^{3n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}} {\displaystyle \pi ={\frac {4}{Z}}} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 441 2 n + 1 2 10 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}{441}^{2n+1}{2}^{10n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}} {\displaystyle \pi ={\frac {4}{Z}}} Z = n = 0 ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(6n+1)\left({\frac {1}{2}}\right)_{n}^{3}}{{4^{n}}(n!)^{3}}}}
π = 32 Z {\displaystyle \pi ={\frac {32}{Z}}} {\displaystyle \pi ={\frac {32}{Z}}} Z = n = 0 ( 5 1 2 ) 8 n ( 42 n 5 + 30 n + 5 5 1 ) ( 1 2 ) n 3 64 n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}} {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {{\sqrt {5}}-1}{2}}\right)^{8n}{\frac {(42n{\sqrt {5}}+30n+5{\sqrt {5}}-1)\left({\frac {1}{2}}\right)_{n}^{3}}{{64^{n}}(n!)^{3}}}}
π = 27 4 Z {\displaystyle \pi ={\frac {27}{4Z}}} {\displaystyle \pi ={\frac {27}{4Z}}} Z = n = 0 ( 2 27 ) n ( 15 n + 2 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}} {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {2}{27}}\right)^{n}{\frac {(15n+2)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}}
π = 15 3 2 Z {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}} {\displaystyle \pi ={\frac {15{\sqrt {3}}}{2Z}}} Z = n = 0 ( 4 125 ) n ( 33 n + 4 ) ( 1 2 ) n ( 1 3 ) n ( 2 3 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}} {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(33n+4)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{3}}\right)_{n}\left({\frac {2}{3}}\right)_{n}}{(n!)^{3}}}}
π = 85 85 18 3 Z {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}} {\displaystyle \pi ={\frac {85{\sqrt {85}}}{18{\sqrt {3}}Z}}} Z = n = 0 ( 4 85 ) n ( 133 n + 8 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}} {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{85}}\right)^{n}{\frac {(133n+8)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}}
π = 5 5 2 3 Z {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}} {\displaystyle \pi ={\frac {5{\sqrt {5}}}{2{\sqrt {3}}Z}}} Z = n = 0 ( 4 125 ) n ( 11 n + 1 ) ( 1 2 ) n ( 1 6 ) n ( 5 6 ) n ( n ! ) 3 {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}} {\displaystyle Z=\sum _{n=0}^{\infty }\left({\frac {4}{125}}\right)^{n}{\frac {(11n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{6}}\right)_{n}\left({\frac {5}{6}}\right)_{n}}{(n!)^{3}}}}
π = 2 3 Z {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}} {\displaystyle \pi ={\frac {2{\sqrt {3}}}{Z}}} Z = n = 0 ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(8n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{n}}}}
π = 3 9 Z {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}} {\displaystyle \pi ={\frac {\sqrt {3}}{9Z}}} Z = n = 0 ( 40 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 49 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(40n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{49}^{2n+1}}}}
π = 2 11 11 Z {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}} {\displaystyle \pi ={\frac {2{\sqrt {11}}}{11Z}}} Z = n = 0 ( 280 n + 19 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 99 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(280n+19)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{99}^{2n+1}}}}
π = 2 4 Z {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}} {\displaystyle \pi ={\frac {\sqrt {2}}{4Z}}} Z = n = 0 ( 10 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(10n+1)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{9}^{2n+1}}}}
π = 4 5 5 Z {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}} {\displaystyle \pi ={\frac {4{\sqrt {5}}}{5Z}}} Z = n = 0 ( 644 n + 41 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 5 n 72 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(644n+41)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}5^{n}{72}^{2n+1}}}}
π = 4 3 3 Z {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}} {\displaystyle \pi ={\frac {4{\sqrt {3}}}{3Z}}} Z = n = 0 ( 1 ) n ( 28 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 3 n 4 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(28n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{3^{n}}{4}^{n+1}}}}
π = 4 Z {\displaystyle \pi ={\frac {4}{Z}}} {\displaystyle \pi ={\frac {4}{Z}}} Z = n = 0 ( 1 ) n ( 20 n + 3 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 2 2 n + 1 {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(20n+3)\left({\frac {1}{2}}\right)_{n}\left({\frac {1}{4}}\right)_{n}\left({\frac {3}{4}}\right)_{n}}{(n!)^{3}{2}^{2n+1}}}}
π = 72 Z {\displaystyle \pi ={\frac {72}{Z}}} {\displaystyle \pi ={\frac {72}{Z}}} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(260n+23)}{(n!)^{4}4^{4n}18^{2n}}}}
π = 3528 Z {\displaystyle \pi ={\frac {3528}{Z}}} {\displaystyle \pi ={\frac {3528}{Z}}} Z = n = 0 ( 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}} {\displaystyle Z=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(4n)!(21460n+1123)}{(n!)^{4}4^{4n}882^{2n}}}}

( x ) n {\displaystyle (x)_{n}} {\displaystyle (x)_{n}} は階乗冪

→「en:Ramanujan–Sato series」も参照

無限積

[編集 ]
π 4 = 3 4 5 4 7 8 11 12 13 12 17 16 19 20 23 24 29 28 31 32 {\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}\cdot {\frac {5}{4}}\cdot {\frac {7}{8}}\cdot {\frac {11}{12}}\cdot {\frac {13}{12}}\cdot {\frac {17}{16}}\cdot {\frac {19}{20}}\cdot {\frac {23}{24}}\cdot {\frac {29}{28}}\cdot {\frac {31}{32}}\cdot ,円\cdots } {\displaystyle {\frac {\pi }{4}}={\frac {3}{4}}\cdot {\frac {5}{4}}\cdot {\frac {7}{8}}\cdot {\frac {11}{12}}\cdot {\frac {13}{12}}\cdot {\frac {17}{16}}\cdot {\frac {19}{20}}\cdot {\frac {23}{24}}\cdot {\frac {29}{28}}\cdot {\frac {31}{32}}\cdot ,円\cdots } (オイラー)
全ての奇素数を分子とし、それに最も近い4の倍数分母とした分数の総乗。
n = 1 4 n 2 4 n 2 1 = 2 1 2 3 4 3 4 5 6 5 6 7 8 7 8 9 = 4 3 16 15 36 35 64 63 = π 2 {\displaystyle \prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {4}{3}}\cdot {\frac {16}{15}}\cdot {\frac {36}{35}}\cdot {\frac {64}{63}}\cdot ,円\cdots ={\frac {\pi }{2}}} {\displaystyle \prod _{n=1}^{\infty }{\frac {4n^{2}}{4n^{2}-1}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot {\frac {8}{7}}\cdot {\frac {8}{9}}\cdots ={\frac {4}{3}}\cdot {\frac {16}{15}}\cdot {\frac {36}{35}}\cdot {\frac {64}{63}}\cdot ,円\cdots ={\frac {\pi }{2}}} (ウォリス積を参照)
n = 1 cos 90 2 n = 2 2 2 + 2 2 2 + 2 + 2 2 = 2 π {\displaystyle \prod _{n=1}^{\infty }\cos {\frac {90^{\circ }}{2^{n}}}={\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdot ,円\cdots ={\frac {2}{\pi }}} {\displaystyle \prod _{n=1}^{\infty }\cos {\frac {90^{\circ }}{2^{n}}}={\frac {\sqrt {2}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}\cdot {\frac {\sqrt {2+{\sqrt {2+{\sqrt {2}}}}}}{2}}\cdot ,円\cdots ={\frac {2}{\pi }}} (ビエトの公式)

連分数

[編集 ]
π = 3 + 1 2 6 + 3 2 6 + 5 2 6 + 7 2 6 + {\displaystyle \pi ={3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+\ddots ,円}}}}}}}}}} {\displaystyle \pi ={3+{\cfrac {1^{2}}{6+{\cfrac {3^{2}}{6+{\cfrac {5^{2}}{6+{\cfrac {7^{2}}{6+\ddots ,円}}}}}}}}}}
π = 4 1 + 1 2 3 + 2 2 5 + 3 2 7 + 4 2 9 + {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}} {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{3+{\cfrac {2^{2}}{5+{\cfrac {3^{2}}{7+{\cfrac {4^{2}}{9+\ddots }}}}}}}}}}}
π = 4 1 + 1 2 2 + 3 2 2 + 5 2 2 + 7 2 2 + {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+\ddots }}}}}}}}}}} {\displaystyle \pi ={\cfrac {4}{1+{\cfrac {1^{2}}{2+{\cfrac {3^{2}}{2+{\cfrac {5^{2}}{2+{\cfrac {7^{2}}{2+\ddots }}}}}}}}}}}
2 π = 6 + 2 2 12 + 6 2 12 + 10 2 12 + 14 2 12 + 18 2 12 + {\displaystyle 2\pi ={6+{\cfrac {2^{2}}{12+{\cfrac {6^{2}}{12+{\cfrac {10^{2}}{12+{\cfrac {14^{2}}{12+{\cfrac {18^{2}}{12+\ddots }}}}}}}}}}}} {\displaystyle 2\pi ={6+{\cfrac {2^{2}}{12+{\cfrac {6^{2}}{12+{\cfrac {10^{2}}{12+{\cfrac {14^{2}}{12+{\cfrac {18^{2}}{12+\ddots }}}}}}}}}}}}
→「連分数」も参照

その他

[編集 ]
n ! 2 π n ( n e ) n {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}} {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}} (スターリングの近似)
e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0} {\displaystyle e^{i\pi }+1=0} (オイラーの等式)
k = 1 n φ ( k ) 3 n 2 π 2 {\displaystyle \sum _{k=1}^{n}\varphi (k)\sim {\frac {3n^{2}}{\pi ^{2}}}} {\displaystyle \sum _{k=1}^{n}\varphi (k)\sim {\frac {3n^{2}}{\pi ^{2}}}} (オイラーのトーティエント関数)
k = 1 n φ ( k ) k 6 n π 2 {\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}\sim {\frac {6n}{\pi ^{2}}}} {\displaystyle \sum _{k=1}^{n}{\frac {\varphi (k)}{k}}\sim {\frac {6n}{\pi ^{2}}}} (オイラーのトーティエント関数)
Γ ( 1 2 ) = π {\displaystyle \Gamma \left({1 \over 2}\right)={\sqrt {\pi }}} {\displaystyle \Gamma \left({1 \over 2}\right)={\sqrt {\pi }}} (ガンマ関数)
π = Γ ( 1 / 4 ) 4 / 3 agm ( 1 , 2 ) 2 / 3 2 {\displaystyle \pi ={\frac {\Gamma \left({1/4}\right)^{4/3}\operatorname {agm} (1,{\sqrt {2}})^{2/3}}{2}}} {\displaystyle \pi ={\frac {\Gamma \left({1/4}\right)^{4/3}\operatorname {agm} (1,{\sqrt {2}})^{2/3}}{2}}} (agmは算術幾何平均)
lim n 1 n 2 k = 1 n ( n mod k ) = 1 π 2 12 {\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n^{2}}}\sum _{k=1}^{n}(n\;{\bmod {\;}}k)=1-{\frac {\pi ^{2}}{12}}} {\displaystyle \lim _{n\rightarrow \infty }{\frac {1}{n^{2}}}\sum _{k=1}^{n}(n\;{\bmod {\;}}k)=1-{\frac {\pi ^{2}}{12}}} (mod は剰余演算)
π = lim n 4 n 2 k = 1 n n 2 k 2 {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {4}{n^{2}}}\sum _{k=1}^{n}{\sqrt {n^{2}-k^{2}}}} {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {4}{n^{2}}}\sum _{k=1}^{n}{\sqrt {n^{2}-k^{2}}}} (単位円の面積とリーマン和を参照)
π = lim n 2 4 n n ( 2 n n ) 2 {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {2^{4n}}{n{2n \choose n}^{2}}}} {\displaystyle \pi =\lim _{n\rightarrow \infty }{\frac {2^{4n}}{n{2n \choose n}^{2}}}} (スターリングの近似)

参考文献

[編集 ]
  1. ^ Cetin Hakimoglu-Brown Derivation of Rapidly Converging Infinite Series
  2. ^ Weisstein, Eric W. "Pi Formulas", MathWorld
  3. ^ Carl B. Boyer, A History of Mathematics, Chapter 21., p. 488-489
  4. ^ Simon Plouffe / David Bailey. "The world of Pi". Pi314.net. 2011年1月29日閲覧。
    "Collection of series for π". Numbers.computation.free.fr. 2011年1月29日閲覧。

関連文献

[編集 ]

AltStyle によって変換されたページ (->オリジナル) /