Weierstrass elliptic function
In mathematics, the Weierstrass elliptic functions are elliptic functions that take a particularly simple form. They are named for Karl Weierstrass. This class of functions is also referred to as ℘-functions and they are usually denoted by the symbol ℘, a uniquely fancy script p. They play an important role in the theory of elliptic functions, i.e., meromorphic functions that are doubly periodic. A ℘-function together with its derivative can be used to parameterize elliptic curves and they generate the field of elliptic functions with respect to a given period lattice.
Symbol for Weierstrass {\displaystyle \wp }-function
Motivation
[edit ]A cubic of the form {\displaystyle C_{g_{2},g_{3}}^{\mathbb {C} }=\{(x,y)\in \mathbb {C} ^{2}:y^{2}=4x^{3}-g_{2}x-g_{3}\}}, where {\displaystyle g_{2},g_{3}\in \mathbb {C} } are complex numbers with {\displaystyle g_{2}^{3}-27g_{3}^{2}\neq 0}, cannot be rationally parameterized.[1] Yet one still wants to find a way to parameterize it.
For the quadric {\displaystyle K=\left\{(x,y)\in \mathbb {R} ^{2}:x^{2}+y^{2}=1\right\}}; the unit circle, there exists a (non-rational) parameterization using the sine function and its derivative the cosine function: {\displaystyle \psi :\mathbb {R} /2\pi \mathbb {Z} \to K,\quad t\mapsto (\sin t,\cos t).} Because of the periodicity of the sine and cosine {\displaystyle \mathbb {R} /2\pi \mathbb {Z} } is chosen to be the domain, so the function is bijective.
In a similar way one can get a parameterization of {\displaystyle C_{g_{2},g_{3}}^{\mathbb {C} }} by means of the doubly periodic {\displaystyle \wp }-function and its derivative, namely via {\displaystyle (x,y)=(\wp (z),\wp '(z))}. This parameterization has the domain {\displaystyle \mathbb {C} /\Lambda }, which is topologically equivalent to a torus.[2]
There is another analogy to the trigonometric functions. Consider the integral function {\displaystyle a(x)=\int _{0}^{x}{\frac {dy}{\sqrt {1-y^{2}}}}.} It can be simplified by substituting {\displaystyle y=\sin t} and {\displaystyle s=\arcsin x}: {\displaystyle a(x)=\int _{0}^{s}dt=s=\arcsin x.} That means {\displaystyle a^{-1}(x)=\sin x}. So the sine function is an inverse function of an integral function.[3]
Elliptic functions are the inverse functions of elliptic integrals. In particular, let: {\displaystyle u(z)=\int _{z}^{\infty }{\frac {ds}{\sqrt {4s^{3}-g_{2}s-g_{3}}}}.} Then the extension of {\displaystyle u^{-1}} to the complex plane equals the {\displaystyle \wp }-function.[4] This invertibility is used in complex analysis to provide a solution to certain nonlinear differential equations satisfying the Painlevé property, i.e., those equations that admit poles as their only movable singularities.[5]
Definition
[edit ]Let {\displaystyle \omega _{1},\omega _{2}\in \mathbb {C} } be two complex numbers that are linearly independent over {\displaystyle \mathbb {R} } and let {\displaystyle \Lambda :=\mathbb {Z} \omega _{1}+\mathbb {Z} \omega _{2}:=\{m\omega _{1}+n\omega _{2}:m,n\in \mathbb {Z} \}} be the period lattice generated by those numbers. Then the {\displaystyle \wp }-function is defined as follows:
- {\displaystyle \wp (z,\omega _{1},\omega _{2}):=\wp (z)={\frac {1}{z^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(z-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right).}
This series converges locally uniformly absolutely in the complex torus {\displaystyle \mathbb {C} /\Lambda }.
It is common to use {\displaystyle 1} and {\displaystyle \tau } in the upper half-plane {\displaystyle \mathbb {H} :=\{z\in \mathbb {C} :\operatorname {Im} (z)>0\}} as generators of the lattice. Dividing by {\textstyle \omega _{1}} maps the lattice {\displaystyle \mathbb {Z} \omega _{1}+\mathbb {Z} \omega _{2}} isomorphically onto the lattice {\displaystyle \mathbb {Z} +\mathbb {Z} \tau } with {\textstyle \tau ={\tfrac {\omega _{2}}{\omega _{1}}}}. Because {\displaystyle -\tau } can be substituted for {\displaystyle \tau }, without loss of generality we can assume {\displaystyle \tau \in \mathbb {H} }, and then define {\displaystyle \wp (z,\tau ):=\wp (z,1,\tau )}. With that definition, we have {\displaystyle \wp (z,\omega _{1},\omega _{2})=\omega _{1}^{-2}\wp (z/\omega _{1},\omega _{2}/\omega _{1})}.
Properties
[edit ]- {\displaystyle \wp } is a meromorphic function with a pole of order 2 at each period {\displaystyle \lambda } in {\displaystyle \Lambda }.
- {\displaystyle \wp } is a homogeneous function in that:
- {\displaystyle \wp (\lambda z,\lambda \omega _{1},\lambda \omega _{2})=\lambda ^{-2}\wp (z,\omega _{1},\omega _{2}).}
- {\displaystyle \wp } is an even function. That means {\displaystyle \wp (z)=\wp (-z)} for all {\displaystyle z\in \mathbb {C} \setminus \Lambda }, which can be seen in the following way:
- {\displaystyle {\begin{aligned}\wp (-z)&={\frac {1}{(-z)^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(-z-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right)\\&={\frac {1}{z^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(z+\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right)\\&={\frac {1}{z^{2}}}+\sum _{\lambda \in \Lambda \setminus \{0\}}\left({\frac {1}{(z-\lambda )^{2}}}-{\frac {1}{\lambda ^{2}}}\right)=\wp (z).\end{aligned}}}
- The second last equality holds because {\displaystyle \{-\lambda :\lambda \in \Lambda \}=\Lambda }. Since the sum converges absolutely this rearrangement does not change the limit.
- The derivative of {\displaystyle \wp } is given by:[6] {\displaystyle \wp '(z)=-2\sum _{\lambda \in \Lambda }{\frac {1}{(z-\lambda )^{3}}}.}
- {\displaystyle \wp } and {\displaystyle \wp '} are doubly periodic with the periods {\displaystyle \omega _{1}} and {\displaystyle \omega _{2}}.[6] This means: {\displaystyle {\begin{aligned}\wp (z+\omega _{1})&=\wp (z)=\wp (z+\omega _{2}),\ {\textrm {and}}\\[3mu]\wp '(z+\omega _{1})&=\wp '(z)=\wp '(z+\omega _{2}).\end{aligned}}} It follows that {\displaystyle \wp (z+\lambda )=\wp (z)} and {\displaystyle \wp '(z+\lambda )=\wp '(z)} for all {\displaystyle \lambda \in \Lambda }.
Laurent expansion
[edit ]Let {\displaystyle r:=\min\{{|\lambda }|:0\neq \lambda \in \Lambda \}}. Then for {\displaystyle 0<|z|<r} the {\displaystyle \wp }-function has the following Laurent expansion {\displaystyle \wp (z)={\frac {1}{z^{2}}}+\sum _{n=1}^{\infty }(2n+1)G_{2n+2}z^{2n}} where {\displaystyle G_{n}=\sum _{0\neq \lambda \in \Lambda }\lambda ^{-n}} for {\displaystyle n\geq 3} are so called Eisenstein series.[6]
Differential equation
[edit ]Set {\displaystyle g_{2}=60G_{4}} and {\displaystyle g_{3}=140G_{6}}. Then the {\displaystyle \wp }-function satisfies the differential equation[6] {\displaystyle \wp '^{2}(z)=4\wp ^{3}(z)-g_{2}\wp (z)-g_{3}.} This relation can be verified by forming a linear combination of powers of {\displaystyle \wp } and {\displaystyle \wp '} to eliminate the pole at {\displaystyle z=0}. This yields an entire elliptic function that has to be constant by Liouville's theorem.[6]
Invariants
[edit ]The coefficients of the above differential equation {\displaystyle g_{2}} and {\displaystyle g_{3}} are known as the invariants. Because they depend on the lattice {\displaystyle \Lambda } they can be viewed as functions in {\displaystyle \omega _{1}} and {\displaystyle \omega _{2}}.
The series expansion suggests that {\displaystyle g_{2}} and {\displaystyle g_{3}} are homogeneous functions of degree {\displaystyle -4} and {\displaystyle -6}. That is[7] {\displaystyle g_{2}(\lambda \omega _{1},\lambda \omega _{2})=\lambda ^{-4}g_{2}(\omega _{1},\omega _{2})} {\displaystyle g_{3}(\lambda \omega _{1},\lambda \omega _{2})=\lambda ^{-6}g_{3}(\omega _{1},\omega _{2})} for {\displaystyle \lambda \neq 0}.
If {\displaystyle \omega _{1}} and {\displaystyle \omega _{2}} are chosen in such a way that {\displaystyle \operatorname {Im} \left({\tfrac {\omega _{2}}{\omega _{1}}}\right)>0}, {\displaystyle g_{2}} and {\displaystyle g_{3}} can be interpreted as functions on the upper half-plane {\displaystyle \mathbb {H} :=\{z\in \mathbb {C} :\operatorname {Im} (z)>0\}}.
Let {\displaystyle \tau ={\tfrac {\omega _{2}}{\omega _{1}}}}. One has:[8] {\displaystyle g_{2}(1,\tau )=\omega _{1}^{4}g_{2}(\omega _{1},\omega _{2}),} {\displaystyle g_{3}(1,\tau )=\omega _{1}^{6}g_{3}(\omega _{1},\omega _{2}).} That means g2 and g3 are only scaled by doing this. Set {\displaystyle g_{2}(\tau ):=g_{2}(1,\tau )} and {\displaystyle g_{3}(\tau ):=g_{3}(1,\tau ).} As functions of {\displaystyle \tau \in \mathbb {H} }, {\displaystyle g_{2}} and {\displaystyle g_{3}} are so called modular forms.
The Fourier series for {\displaystyle g_{2}} and {\displaystyle g_{3}} are given as follows:[9] {\displaystyle g_{2}(\tau )={\frac {4}{3}}\pi ^{4}\left[1+240\sum _{k=1}^{\infty }\sigma _{3}(k)q^{2k}\right]} {\displaystyle g_{3}(\tau )={\frac {8}{27}}\pi ^{6}\left[1-504\sum _{k=1}^{\infty }\sigma _{5}(k)q^{2k}\right]} where {\displaystyle \sigma _{m}(k):=\sum _{d\mid {k}}d^{m}} is the divisor function and {\displaystyle q=e^{\pi i\tau }} is the nome.
Modular discriminant
[edit ]The modular discriminant {\displaystyle \Delta } is defined as the discriminant of the characteristic polynomial of the differential equation {\displaystyle \wp '^{2}(z)=4\wp ^{3}(z)-g_{2}\wp (z)-g_{3}} as follows: {\displaystyle \Delta =g_{2}^{3}-27g_{3}^{2}.} The discriminant is a modular form of weight {\displaystyle 12}. That is, under the action of the modular group, it transforms as {\displaystyle \Delta \left({\frac {a\tau +b}{c\tau +d}}\right)=\left(c\tau +d\right)^{12}\Delta (\tau )} where {\displaystyle a,b,d,c\in \mathbb {Z} } with {\displaystyle ad-bc=1}.[10]
Note that {\displaystyle \Delta =(2\pi )^{12}\eta ^{24}} where {\displaystyle \eta } is the Dedekind eta function.[11]
For the Fourier coefficients of {\displaystyle \Delta }, see Ramanujan tau function.
The constants e1, e2 and e3
[edit ]{\displaystyle e_{1}}, {\displaystyle e_{2}} and {\displaystyle e_{3}} are usually used to denote the values of the {\displaystyle \wp }-function at the half-periods. {\displaystyle e_{1}\equiv \wp \left({\frac {\omega _{1}}{2}}\right)} {\displaystyle e_{2}\equiv \wp \left({\frac {\omega _{2}}{2}}\right)} {\displaystyle e_{3}\equiv \wp \left({\frac {\omega _{1}+\omega _{2}}{2}}\right)} They are pairwise distinct and only depend on the lattice {\displaystyle \Lambda } and not on its generators.[12]
{\displaystyle e_{1}}, {\displaystyle e_{2}} and {\displaystyle e_{3}} are the roots of the cubic polynomial {\displaystyle 4\wp (z)^{3}-g_{2}\wp (z)-g_{3}} and are related by the equation: {\displaystyle e_{1}+e_{2}+e_{3}=0.} Because those roots are distinct the discriminant {\displaystyle \Delta } does not vanish on the upper half plane.[13] Now we can rewrite the differential equation: {\displaystyle \wp '^{2}(z)=4(\wp (z)-e_{1})(\wp (z)-e_{2})(\wp (z)-e_{3}).} That means the half-periods are zeros of {\displaystyle \wp '}.
The invariants {\displaystyle g_{2}} and {\displaystyle g_{3}} can be expressed in terms of these constants in the following way:[14] {\displaystyle g_{2}=-4(e_{1}e_{2}+e_{1}e_{3}+e_{2}e_{3})} {\displaystyle g_{3}=4e_{1}e_{2}e_{3}} {\displaystyle e_{1}}, {\displaystyle e_{2}} and {\displaystyle e_{3}} are related to the modular lambda function: {\displaystyle \lambda (\tau )={\frac {e_{3}-e_{2}}{e_{1}-e_{2}}},\quad \tau ={\frac {\omega _{2}}{\omega _{1}}}.}
Relation to Jacobi's elliptic functions
[edit ]For numerical work, it is often convenient to calculate the Weierstrass elliptic function in terms of Jacobi's elliptic functions.
The basic relations are:[15] {\displaystyle \wp (z)=e_{3}+{\frac {e_{1}-e_{3}}{\operatorname {sn} ^{2}w}}=e_{2}+(e_{1}-e_{3}){\frac {\operatorname {dn} ^{2}w}{\operatorname {sn} ^{2}w}}=e_{1}+(e_{1}-e_{3}){\frac {\operatorname {cn} ^{2}w}{\operatorname {sn} ^{2}w}}} where {\displaystyle e_{1},e_{2}} and {\displaystyle e_{3}} are the three roots described above and where the modulus k of the Jacobi functions equals {\displaystyle k={\sqrt {\frac {e_{2}-e_{3}}{e_{1}-e_{3}}}}} and their argument w equals {\displaystyle w=z{\sqrt {e_{1}-e_{3}}}.}
Relation to Jacobi's theta functions
[edit ]The function {\displaystyle \wp (z,\tau )=\wp (z,1,\omega _{2}/\omega _{1})} can be represented by Jacobi's theta functions: {\displaystyle \wp (z,\tau )=\left(\pi \theta _{2}(0,q)\theta _{3}(0,q){\frac {\theta _{4}(\pi z,q)}{\theta _{1}(\pi z,q)}}\right)^{2}-{\frac {\pi ^{2}}{3}}\left(\theta _{2}^{4}(0,q)+\theta _{3}^{4}(0,q)\right)} where {\displaystyle q=e^{\pi i\tau }} is the nome and {\displaystyle \tau } is the period ratio {\displaystyle (\tau \in \mathbb {H} )}.[16] This also provides a very rapid algorithm for computing {\displaystyle \wp (z,\tau )}.
Relation to elliptic curves
[edit ]Consider the embedding of the cubic curve in the complex projective plane
- {\displaystyle {\bar {C}}_{g_{2},g_{3}}^{\mathbb {C} }=\{(x,y)\in \mathbb {C} ^{2}:y^{2}=4x^{3}-g_{2}x-g_{3}\}\cup \{O\}\subset \mathbb {C} ^{2}\cup \mathbb {P} _{1}(\mathbb {C} )=\mathbb {P} _{2}(\mathbb {C} ).}
where {\displaystyle O} is a point lying on the line at infinity {\displaystyle \mathbb {P} _{1}(\mathbb {C} )}. For this cubic there exists no rational parameterization, if {\displaystyle \Delta \neq 0}.[1] In this case it is also called an elliptic curve. Nevertheless there is a parameterization in homogeneous coordinates that uses the {\displaystyle \wp }-function and its derivative {\displaystyle \wp '}:[17]
- {\displaystyle \varphi (\wp ,\wp '):\mathbb {C} /\Lambda \to {\bar {C}}_{g_{2},g_{3}}^{\mathbb {C} },\quad z\mapsto {\begin{cases}\left[\wp (z):\wp '(z):1\right]&z\notin \Lambda \\\left[0:1:0\right]\quad &z\in \Lambda \end{cases}}}
Now the map {\displaystyle \varphi } is bijective and parameterizes the elliptic curve {\displaystyle {\bar {C}}_{g_{2},g_{3}}^{\mathbb {C} }}.
{\displaystyle \mathbb {C} /\Lambda } is an abelian group and a topological space, equipped with the quotient topology.
It can be shown that every Weierstrass cubic is given in such a way. That is to say that for every pair {\displaystyle g_{2},g_{3}\in \mathbb {C} } with {\displaystyle \Delta =g_{2}^{3}-27g_{3}^{2}\neq 0} there exists a lattice {\displaystyle \mathbb {Z} \omega _{1}+\mathbb {Z} \omega _{2}}, such that
{\displaystyle g_{2}=g_{2}(\omega _{1},\omega _{2})} and {\displaystyle g_{3}=g_{3}(\omega _{1},\omega _{2})}.[18]
The statement that elliptic curves over {\displaystyle \mathbb {Q} } can be parameterized over {\displaystyle \mathbb {Q} }, is known as the modularity theorem. This is an important theorem in number theory. It was part of Andrew Wiles' proof (1995) of Fermat's Last Theorem.
Addition theorem
[edit ]The addition theorem states[19] that if {\displaystyle z,w,} and {\displaystyle z+w} do not belong to {\displaystyle \Lambda }, then {\displaystyle \det {\begin{bmatrix}1&\wp (z)&\wp '(z)\1円&\wp (w)&\wp '(w)\1円&\wp (z+w)&-\wp '(z+w)\end{bmatrix}}=0.} This states that the points {\displaystyle P=(\wp (z),\wp '(z)),} {\displaystyle Q=(\wp (w),\wp '(w)),} and {\displaystyle R=(\wp (z+w),-\wp '(z+w))} are collinear, the geometric form of the group law of an elliptic curve.
This can be proven[20] by considering constants {\displaystyle A,B} such that {\displaystyle \wp '(z)=A\wp (z)+B,\quad \wp '(w)=A\wp (w)+B.} Then the elliptic function {\displaystyle \wp '(\zeta )-A\wp (\zeta )-B} has a pole of order three at zero, and therefore three zeros whose sum belongs to {\displaystyle \Lambda }. Two of the zeros are {\displaystyle z} and {\displaystyle w}, and thus the third is congruent to {\displaystyle -z-w}.
Alternative form
[edit ]The addition theorem can be put into the alternative form, for {\displaystyle z,w,z-w,z+w\not \in \Lambda }:[21] {\displaystyle \wp (z+w)={\frac {1}{4}}\left[{\frac {\wp '(z)-\wp '(w)}{\wp (z)-\wp (w)}}\right]^{2}-\wp (z)-\wp (w).}
As well as the duplication formula:[21] {\displaystyle \wp (2z)={\frac {1}{4}}\left[{\frac {\wp ''(z)}{\wp '(z)}}\right]^{2}-2\wp (z).}
Proofs
[edit ]This can be proven from the addition theorem shown above. The points {\displaystyle P=(\wp (u),\wp '(u)),Q=(\wp (v),\wp '(v)),} and {\displaystyle R=(\wp (u+v),-\wp '(u+v))} are collinear and lie on the curve {\displaystyle y^{2}=4x^{3}-g_{2}x-g_{3}}. The slope of that line is {\displaystyle m={\frac {y_{P}-y_{Q}}{x_{P}-x_{Q}}}={\frac {\wp '(u)-\wp '(v)}{\wp (u)-\wp (v)}}.} So {\displaystyle x=x_{P}=\wp (u)}, {\displaystyle x=x_{Q}=\wp (v)}, and {\displaystyle x=x_{R}=\wp (u+v)} all satisfy a cubic {\displaystyle (mx+q)^{2}=4x^{3}-g_{2}x-g_{3},} where {\displaystyle q} is a constant. This becomes {\displaystyle 4x^{3}-m^{2}x^{2}-(2mq+g_{2})x-g_{3}-q^{2}=0.} Thus {\displaystyle x_{P}+x_{Q}+x_{R}={\frac {m^{2}}{4}}} which provides the wanted formula {\displaystyle \wp (u+v)+\wp (u)+\wp (v)={\frac {1}{4}}\left[{\frac {\wp '(u)-\wp '(v)}{\wp (u)-\wp (v)}}\right]^{2}.}
A direct proof is as follows.[22] Any elliptic function {\displaystyle f} can be expressed as: {\displaystyle f(u)=c\prod _{i=1}^{n}{\frac {\sigma (u-a_{i})}{\sigma (u-b_{i})}}\quad c\in \mathbb {C} } where {\displaystyle \sigma } is the Weierstrass sigma function and {\displaystyle a_{i},b_{i}} are the respective zeros and poles in the period parallelogram. Considering the function {\displaystyle \wp (u)-\wp (v)} as a function of {\displaystyle u}, we have {\displaystyle \wp (u)-\wp (v)=c{\frac {\sigma (u+v)\sigma (u-v)}{\sigma (u)^{2}}}.} Multiplying both sides by {\displaystyle u^{2}} and letting {\displaystyle u\to 0}, we have {\displaystyle 1=-c\sigma (v)^{2}}, so {\displaystyle c=-{\frac {1}{\sigma (v)^{2}}}\implies \wp (u)-\wp (v)=-{\frac {\sigma (u+v)\sigma (u-v)}{\sigma (u)^{2}\sigma (v)^{2}}}.}
By definition the Weierstrass zeta function: {\displaystyle {\frac {d}{dz}}\ln \sigma (z)=\zeta (z)} therefore we logarithmically differentiate both sides with respect to {\displaystyle u} obtaining: {\displaystyle {\frac {\wp '(u)}{\wp (u)-\wp (v)}}=\zeta (u+v)-2\zeta (u)-\zeta (u-v)} Once again by definition {\displaystyle \zeta '(z)=-\wp (z)} thus by differentiating once more on both sides and rearranging the terms we obtain {\displaystyle -\wp (u+v)=-\wp (u)+{\frac {1}{2}}{\frac {\wp ''(v)[\wp (u)-\wp (v)]-\wp '(u)[\wp '(u)-\wp '(v)]}{[\wp (u)-\wp (v)]^{2}}}} Knowing that {\displaystyle \wp ''} has the following differential equation {\displaystyle 2\wp ''=12\wp ^{2}-g_{2}} and rearranging the terms one gets the wanted formula {\displaystyle \wp (u+v)={\frac {1}{4}}\left[{\frac {\wp '(u)-\wp '(v)}{\wp (u)-\wp (v)}}\right]^{2}-\wp (u)-\wp (v).}
Typography
[edit ]The Weierstrass's elliptic function is usually written with a rather special, lower case script letter ℘, which was Weierstrass's own notation introduced in his lectures of 1862–1863.[footnote 1] It should not be confused with the normal mathematical script letters P: P and p.
In computing, the letter ℘ is available as \wp in TeX. In Unicode the code point is U+2118 ℘ SCRIPT CAPITAL P, with the more correct alias weierstrass elliptic function.[footnote 2] In HTML, it can be escaped as ℘ or ℘.
| Preview | ℘ | |
|---|---|---|
| Unicode name | SCRIPT CAPITAL P / WEIERSTRASS ELLIPTIC FUNCTION | |
| Encodings | decimal | hex |
| Unicode | 8472 | U+2118 |
| UTF-8 | 226 132 152 | E2 84 98 |
| Numeric character reference | ℘ |
℘ |
| Named character reference | ℘, ℘ | |
See also
[edit ]Footnotes
[edit ]- ^ This symbol was also used in the version of Weierstrass's lectures published by Schwarz in the 1880s. The first edition of A Course of Modern Analysis by E. T. Whittaker in 1902 also used it.[23]
- ^ The Unicode Consortium has acknowledged two problems with the letter's name: the letter is in fact lowercase, and it is not a "script" class letter, like U+1D4C5 𝓅 MATHEMATICAL SCRIPT SMALL P, but the letter for Weierstrass's elliptic function. Unicode added the alias as a correction.[24] [25]
References
[edit ]- ^ a b Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 8, ISBN 978-3-8348-2348-9
- ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 259, ISBN 978-3-540-32058-6
- ^ Jeremy Gray (2015), Real and the complex: a history of analysis in the 19th century (in German), Cham, p. 71, ISBN 978-3-319-23715-2
{{citation}}: CS1 maint: location missing publisher (link) - ^ Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 294, ISBN 978-3-540-32058-6
- ^ Ablowitz, Mark J.; Fokas, Athanassios S. (2003). Complex Variables: Introduction and Applications. Cambridge University Press. p. 185. doi:10.1017/cbo9780511791246. ISBN 978-0-521-53429-1.
- ^ a b c d e Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 11, ISBN 0-387-90185-X
- ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 14. ISBN 0-387-90185-X. OCLC 2121639.
- ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 14, ISBN 0-387-90185-X
- ^ Apostol, Tom M. (1990). Modular functions and Dirichlet series in number theory (2nd ed.). New York: Springer-Verlag. p. 20. ISBN 0-387-97127-0. OCLC 20262861.
- ^ Apostol, Tom M. (1976). Modular functions and Dirichlet series in number theory. New York: Springer-Verlag. p. 50. ISBN 0-387-90185-X. OCLC 2121639.
- ^ Chandrasekharan, K. (Komaravolu), 1920- (1985). Elliptic functions. Berlin: Springer-Verlag. p. 122. ISBN 0-387-15295-4. OCLC 12053023.
{{cite book}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link) - ^ Busam, Rolf (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 270, ISBN 978-3-540-32058-6
- ^ Apostol, Tom M. (1976), Modular functions and Dirichlet series in number theory (in German), New York: Springer-Verlag, p. 13, ISBN 0-387-90185-X
- ^ K. Chandrasekharan (1985), Elliptic functions (in German), Berlin: Springer-Verlag, p. 33, ISBN 0-387-15295-4
- ^ Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw–Hill. p. 721. LCCN 59014456.
- ^ Reinhardt, W. P.; Walker, P. L. (2010), "Weierstrass Elliptic and Modular Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248 .
- ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 12, ISBN 978-3-8348-2348-9
- ^ Hulek, Klaus. (2012), Elementare Algebraische Geometrie : Grundlegende Begriffe und Techniken mit zahlreichen Beispielen und Anwendungen (in German) (2., überarb. u. erw. Aufl. 2012 ed.), Wiesbaden: Vieweg+Teubner Verlag, p. 111, ISBN 978-3-8348-2348-9
- ^ Watson; Whittaker (1927), A course in modern analysis (4 ed.), Cambridge University Press, pp. 440–441
- ^ Watson; Whittaker (1927), A course in modern analysis (4 ed.), Cambridge University Press, pp. 440–441
- ^ a b Rolf Busam (2006), Funktionentheorie 1 (in German) (4., korr. und erw. Aufl ed.), Berlin: Springer, p. 286, ISBN 978-3-540-32058-6
- ^ Akhiezer (1990), Elements of the theory of elliptic functions, AMS, pp. 40–41
- ^ teika kazura (2017年08月17日), The letter ℘ Name & origin?, MathOverflow , retrieved 2018年08月30日
- ^ "Known Anomalies in Unicode Character Names". Unicode Technical Note #27. version 4. Unicode, Inc. 2017年04月10日. Retrieved 2017年07月20日.
- ^ "NameAliases-10.0.0.txt". Unicode, Inc. 2017年05月06日. Retrieved 2017年07月20日.
- Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 18". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. p. 627. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253.
- N. I. Akhiezer, Elements of the Theory of Elliptic Functions, (1970) Moscow, translated into English as AMS Translations of Mathematical Monographs Volume 79 (1990) AMS, Rhode Island ISBN 0-8218-4532-2
- Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second Edition (1990), Springer, New York ISBN 0-387-97127-0 (See chapter 1.)
- K. Chandrasekharan, Elliptic functions (1980), Springer-Verlag ISBN 0-387-15295-4
- Konrad Knopp, Funktionentheorie II (1947), Dover Publications; Republished in English translation as Theory of Functions (1996), Dover Publications ISBN 0-486-69219-1
- Serge Lang, Elliptic Functions (1973), Addison-Wesley, ISBN 0-201-04162-6
- E. T. Whittaker and G. N. Watson, A Course of Modern Analysis , Cambridge University Press, 1952, chapters 20 and 21
External links
[edit ]- "Weierstrass elliptic functions", Encyclopedia of Mathematics , EMS Press, 2001 [1994]
- Weierstrass's elliptic functions on Mathworld.
- Chapter 23, Weierstrass Elliptic and Modular Functions in DLMF (Digital Library of Mathematical Functions) by W. P. Reinhardt and P. L. Walker.
- Weierstrass P function and its derivative implemented in C by David Dumas