Ramanujan tau function
The Ramanujan tau function, studied by Ramanujan (1916), is the function {\displaystyle \tau :\mathbb {N} \to \mathbb {Z} } defined by the following identity:
- {\displaystyle \sum _{n\geq 1}\tau (n)q^{n}=q\prod _{n\geq 1}\left(1-q^{n}\right)^{24}=q\phi (q)^{24}=\eta (z)^{24}=\Delta (z),}
where {\displaystyle q=\exp(2\pi iz)} with {\displaystyle \mathrm {Im} (z)>0}, {\displaystyle \phi } is the Euler function, {\displaystyle \eta } is the Dedekind eta function, and the function {\displaystyle \Delta (z)} is a holomorphic cusp form of weight 12 and level 1, known as the discriminant modular form (some authors, notably Apostol, write {\displaystyle \Delta /(2\pi )^{12}} instead of {\displaystyle \Delta }). It appears in connection to an "error term" involved in counting the number of ways of expressing an integer as a sum of 24 squares. A formula due to Ian G. Macdonald was given in Dyson (1972).
Values
[edit ]The first few values of the tau function are given in the following table (sequence A000594 in the OEIS):
| {\displaystyle n} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| {\displaystyle \tau (n)} | 1 | −24 | 252 | −1472 | 4830 | −6048 | −16744 | 84480 | −113643 | −115920 | 534612 | −370944 | −577738 | 401856 | 1217160 | 987136 |
Calculating this function on an odd square number (i.e. a centered octagonal number) yields an odd number, whereas for any other number the function yields an even number.[1]
Ramanujan's conjectures
[edit ]Ramanujan (1916) observed, but did not prove, the following three properties of {\displaystyle \tau (n)}:
- {\displaystyle \tau (mn)=\tau (m)\tau (n)} if {\displaystyle \gcd(m,n)=1} (meaning that {\displaystyle \tau (n)} is a multiplicative function)
- {\displaystyle \tau (p^{r+1})=\tau (p)\tau (p^{r})-p^{11}\tau (p^{r-1})} for {\displaystyle p} prime and {\displaystyle r>0}.
- {\displaystyle |\tau (p)|\leq 2p^{11/2}} for all primes {\displaystyle p}.
The first two properties were proved by Mordell (1917) and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures (specifically, he deduced it by applying them to a Kuga-Sato variety).
Congruences for the tau function
[edit ]For {\displaystyle k\in \mathbb {Z} } and {\displaystyle n\in \mathbb {N} }, the Divisor function {\displaystyle \sigma _{k}(n)} is the sum of the {\displaystyle k}th powers of the divisors of {\displaystyle n}. The tau function satisfies several congruence relations; many of them can be expressed in terms of {\displaystyle \sigma _{k}(n)}. Here are some:[2]
- {\displaystyle \tau (n)\equiv \sigma _{11}(n){\pmod {2^{11}}}{\text{ for }}n\equiv 1{\pmod {8}}}[3]
- {\displaystyle \tau (n)\equiv 1217\sigma _{11}(n){\pmod {2^{13}}}{\text{ for }}n\equiv 3{\pmod {8}}}[3]
- {\displaystyle \tau (n)\equiv 1537\sigma _{11}(n){\pmod {2^{12}}}{\text{ for }}n\equiv 5{\pmod {8}}}[3]
- {\displaystyle \tau (n)\equiv 705\sigma _{11}(n){\pmod {2^{14}}}{\text{ for }}n\equiv 7{\pmod {8}}}[3]
- {\displaystyle \tau (n)\equiv n^{-610}\sigma _{1231}(n){\pmod {3^{6}}}{\text{ for }}n\equiv 1{\pmod {3}}}[4]
- {\displaystyle \tau (n)\equiv n^{-610}\sigma _{1231}(n){\pmod {3^{7}}}{\text{ for }}n\equiv 2{\pmod {3}}}[4]
- {\displaystyle \tau (n)\equiv n^{-30}\sigma _{71}(n){\pmod {5^{3}}}{\text{ for }}n\not \equiv 0{\pmod {5}}}[5]
- {\displaystyle \tau (n)\equiv n\sigma _{9}(n){\pmod {7}}}[6]
- {\displaystyle \tau (n)\equiv n\sigma _{9}(n){\pmod {7^{2}}}{\text{ for }}n\equiv 3,5,6{\pmod {7}}}[6]
- {\displaystyle \tau (n)\equiv \sigma _{11}(n){\pmod {691}}.}[7]
For {\displaystyle p\neq 23} prime, we have[2] [8]
- {\displaystyle \tau (p)\equiv 0{\pmod {23}}{\text{ if }}\left({\frac {p}{23}}\right)=-1}
- {\displaystyle \tau (p)\equiv \sigma _{11}(p){\pmod {23^{2}}}{\text{ if }}p{\text{ is of the form }}a^{2}+23b^{2}}[9]
- {\displaystyle \tau (p)\equiv -1{\pmod {23}}{\text{ otherwise}}.}
Explicit formula
[edit ]In 1975 Douglas Niebur proved an explicit formula for the Ramanujan tau function:[10]
- {\displaystyle \tau (n)=n^{4}\sigma (n)-24\sum _{i=1}^{n-1}i^{2}(35i^{2}-52in+18n^{2})\sigma (i)\sigma (n-i).}
where {\displaystyle \sigma (n)} is the sum of the positive divisors of {\displaystyle n}.
Conjectures on the tau function
[edit ]Suppose that {\displaystyle f} is a weight-{\displaystyle k} integer newform and the Fourier coefficients {\displaystyle a(n)} are integers. Consider the problem:
- Given that {\displaystyle f} does not have complex multiplication, do almost all primes {\displaystyle p} have the property that {\displaystyle a(p)\not \equiv 0{\pmod {p}}} ?
Indeed, most primes should have this property, and hence they are called ordinary. Despite the big advances by Deligne and Serre on Galois representations, which determine {\displaystyle a(n){\pmod {p}}} for {\displaystyle n} coprime to {\displaystyle p}, it is unclear how to compute {\displaystyle a(p){\pmod {p}}}. The only theorem in this regard is Elkies' famous result for modular elliptic curves, which guarantees that there are infinitely many primes {\displaystyle p} such that {\displaystyle a(p)=0}, which thus are congruent to 0 modulo {\displaystyle p}. There are no known examples of non-CM {\displaystyle f} with weight greater than 2 for which {\displaystyle a(p)\not \equiv 0{\pmod {p}}} for infinitely many primes {\displaystyle p} (although it should be true for almost all {\displaystyle p}. There are also no known examples with {\displaystyle a(p)\equiv 0{\pmod {p}}} for infinitely many {\displaystyle p}. Some researchers had begun to doubt whether {\displaystyle a(p)\equiv 0{\pmod {p}}} for infinitely many {\displaystyle p}. As evidence, many provided Ramanujan's {\displaystyle \tau (p)} (case of weight 12). The only solutions up to {\displaystyle 10^{10}} to the equation {\displaystyle \tau (p)\equiv 0{\pmod {p}}} are 2, 3, 5, 7, 2411, and 7758337633 (sequence A007659 in the OEIS).[11]
Lehmer (1947) conjectured that {\displaystyle \tau (n)\neq 0} for all {\displaystyle n}, an assertion sometimes known as Lehmer's conjecture. Lehmer verified the conjecture for {\displaystyle n} up to 214928639999 (Apostol 1997, p. 22). The following table summarizes progress on finding successively larger values of {\displaystyle N} for which this condition holds for all {\displaystyle n\leq N}.
| {\displaystyle N} | reference |
|---|---|
| 3316799 | Lehmer (1947) |
| 214928639999 | Lehmer (1949) |
| 1000000000000000 | Serre (1973, p. 98), Serre (1985) |
| 1213229187071998 | Jennings (1993) |
| 22689242781695999 | Jordan and Kelly (1999) |
| 22798241520242687999 | Bosman (2007) |
| 982149821766199295999 | Zeng and Yin (2013) |
| 816212624008487344127999 | Derickx, van Hoeij, and Zeng (2013) |
Ramanujan's L-function
[edit ]Ramanujan's {\displaystyle L}-function is defined by
- {\displaystyle L(s)=\sum _{n\geq 1}{\frac {\tau (n)}{n^{s}}}}
if {\displaystyle \mathrm {Re} (s)>6} and by analytic continuation otherwise. It satisfies the functional equation
- {\displaystyle {\frac {L(s)\Gamma (s)}{(2\pi )^{s}}}={\frac {L(12-s)\Gamma (12-s)}{(2\pi )^{12-s}}},\quad s\notin \mathbb {Z} _{0}^{-},,12円-s\notin \mathbb {Z} _{0}^{-}}
and has the Euler product
- {\displaystyle L(s)=\prod _{p,円{\text{prime}}}{\frac {1}{1-\tau (p)p^{-s}+p^{11-2s}}},\quad \mathrm {Re} (s)>7.}
Ramanujan conjectured that all nontrivial zeros of {\displaystyle L} have real part equal to {\displaystyle 6}.
Notes
[edit ]- ^ Sloane, N. J. A. (ed.). "Sequence A016754 (Odd squares: (2n-1)^2. Also centered octagonal numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
- ^ a b Page 4 of Swinnerton-Dyer 1973
- ^ a b c d Due to Kolberg 1962
- ^ a b Due to Ashworth 1968
- ^ Due to Lahivi
- ^ a b Due to D. H. Lehmer
- ^ Due to Ramanujan 1916
- ^ Due to Wilton 1930
- ^ Due to J.-P. Serre 1968, Section 4.5
- ^ Niebur, Douglas (September 1975). "A formula for Ramanujan's {\displaystyle \tau }-function". Illinois Journal of Mathematics. 19 (3): 448–449. doi:10.1215/ijm/1256050746 . ISSN 0019-2082.
- ^ N. Lygeros and O. Rozier (2010). "A new solution for the equation {\displaystyle \tau (p)\equiv 0{\pmod {p}}}" (PDF). Journal of Integer Sequences. 13: Article 10.7.4.
References
[edit ]- Apostol, T. M. (1997), "Modular Functions and Dirichlet Series in Number Theory", New York: Springer-Verlag 2nd Ed.
- Ashworth, M. H. (1968), Congruence and identical properties of modular forms (D. Phil. Thesis, Oxford)
- Dyson, F. J. (1972), "Missed opportunities", Bull. Amer. Math. Soc., 78 (5): 635–652, doi:10.1090/S0002-9904-1972-12971-9 , Zbl 0271.01005
- Kolberg, O. (1962), "Congruences for Ramanujan's function τ(n)", Arbok Univ. Bergen Mat.-Natur. Ser. (11), MR 0158873, Zbl 0168.29502
- Lehmer, D.H. (1947), "The vanishing of Ramanujan's function τ(n)", Duke Math. J., 14 (2): 429–433, doi:10.1215/s0012-7094-47-01436-1, Zbl 0029.34502
- Lygeros, N. (2010), "A New Solution to the Equation τ(p) ≡ 0 (mod p)" (PDF), Journal of Integer Sequences, 13: Article 10.7.4
- Mordell, Louis J. (1917), "On Mr. Ramanujan's empirical expansions of modular functions.", Proceedings of the Cambridge Philosophical Society , 19: 117–124, JFM 46.0605.01
- Newman, M. (1972), A table of τ (p) modulo p, p prime, 3 ≤ p ≤ 16067, National Bureau of Standards
- Rankin, Robert A. (1988), "Ramanujan's tau-function and its generalizations", in Andrews, George E. (ed.), Ramanujan revisited (Urbana-Champaign, Ill., 1987), Boston, MA: Academic Press, pp. 245–268, ISBN 978-0-12-058560-1, MR 0938968
- Ramanujan, Srinivasa (1916), "On certain arithmetical functions", Trans. Camb. Philos. Soc., 22 (9): 159–184, MR 2280861
- Serre, J-P. (1968), "Une interprétation des congruences relatives à la fonction {\displaystyle \tau } de Ramanujan", Séminaire Delange-Pisot-Poitou, 14
- Swinnerton-Dyer, H. P. F. (1973), "On l-adic representations and congruences for coefficients of modular forms", in Kuyk, Willem; Serre, Jean-Pierre (eds.), Modular Functions of One Variable III, Lecture Notes in Mathematics, vol. 350, pp. 1–55, doi:10.1007/978-3-540-37802-0, ISBN 978-3-540-06483-1, MR 0406931
- Wilton, J. R. (1930), "Congruence properties of Ramanujan's function τ(n)", Proceedings of the London Mathematical Society, 31: 1–10, doi:10.1112/plms/s2-31.1.1