Euler function
In mathematics, the Euler function is given by
- {\displaystyle \phi (q)=\prod _{k=1}^{\infty }(1-q^{k}),\quad |q|<1.}
Named after Leonhard Euler, it is a model example of a q-series and provides the prototypical example of a relation between combinatorics and complex analysis.
Properties
[edit ]The coefficient {\displaystyle p(k)} in the formal power series expansion for {\displaystyle 1/\phi (q)} gives the number of partitions of k. That is,
- {\displaystyle {\frac {1}{\phi (q)}}=\sum _{k=0}^{\infty }p(k)q^{k}}
where {\displaystyle p} is the partition function.
The Euler identity, also known as the Pentagonal number theorem, is
- {\displaystyle \phi (q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{(3n^{2}-n)/2}.}
{\displaystyle (3n^{2}-n)/2} is a pentagonal number.
The Euler function is related to the Dedekind eta function as
- {\displaystyle \phi (e^{2\pi i\tau })=e^{-\pi i\tau /12}\eta (\tau ).}
The Euler function may be expressed as a q-Pochhammer symbol:
- {\displaystyle \phi (q)=(q;q)_{\infty }.}
The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q = 0, yielding
- {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {1}{n}},円{\frac {q^{n}}{1-q^{n}}},}
which is a Lambert series with coefficients -1/n. The logarithm of the Euler function may therefore be expressed as
- {\displaystyle \ln(\phi (q))=\sum _{n=1}^{\infty }b_{n}q^{n}}
where {\displaystyle b_{n}=-\sum _{d|n}{\frac {1}{d}}=} -[1/1, 3/2, 4/3, 7/4, 6/5, 12/6, 8/7, 15/8, 13/9, 18/10, ...] (see OEIS A000203)
On account of the identity {\displaystyle \sigma (n)=\sum _{d|n}d=\sum _{d|n}{\frac {n}{d}}} , where {\displaystyle \sigma (n)} is the sum-of-divisors function, this may also be written as
- {\displaystyle \ln(\phi (q))=-\sum _{n=1}^{\infty }{\frac {\sigma (n)}{n}}\ q^{n}}.
Also if {\displaystyle a,b\in \mathbb {R} ^{+}} and {\displaystyle ab=\pi ^{2}}, then[1]
- {\displaystyle a^{1/4}e^{-a/12}\phi (e^{-2a})=b^{1/4}e^{-b/12}\phi (e^{-2b}).}
Special values
[edit ]The next identities come from Ramanujan's Notebooks:[2]
- {\displaystyle \phi (e^{-\pi })={\frac {e^{\pi /24}\Gamma \left({\frac {1}{4}}\right)}{2^{7/8}\pi ^{3/4}}}}
- {\displaystyle \phi (e^{-2\pi })={\frac {e^{\pi /12}\Gamma \left({\frac {1}{4}}\right)}{2\pi ^{3/4}}}}
- {\displaystyle \phi (e^{-4\pi })={\frac {e^{\pi /6}\Gamma \left({\frac {1}{4}}\right)}{2^{{11}/8}\pi ^{3/4}}}}
- {\displaystyle \phi (e^{-8\pi })={\frac {e^{\pi /3}\Gamma \left({\frac {1}{4}}\right)}{2^{29/16}\pi ^{3/4}}}({\sqrt {2}}-1)^{1/4}}
Using the Pentagonal number theorem, exchanging sum and integral, and then invoking complex-analytic methods, one derives[3]
- {\displaystyle \int _{0}^{1}\phi (q),円\mathrm {d} q={\frac {8{\sqrt {\frac {3}{23}}}\pi \sinh \left({\frac {{\sqrt {23}}\pi }{6}}\right)}{2\cosh \left({\frac {{\sqrt {23}}\pi }{3}}\right)-1}}.}
References
[edit ]- ^ Berndt, B. et al. "The Rogers–Ramanujan Continued Fraction"
- ^ Berndt, Bruce C. (1998). Ramanujan's Notebooks Part V. Springer. ISBN 978-1-4612-7221-2. p. 326
- ^ Sloane, N. J. A. (ed.). "Sequence A258232". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
- Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001