Jump to content
Wikipedia The Free Encyclopedia

Volume integral

From Wikipedia, the free encyclopedia
(Redirected from Volume integrals)
Integral over a 3-D domain
Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t),円dt=f(b)-f(a)} {\displaystyle \int _{a}^{b}f'(t),円dt=f(b)-f(a)}

In mathematics (particularly multivariable calculus), a volume integral (∫∫∫) is an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many applications, for example, to calculate flux densities, or to calculate mass from a corresponding density function.

In coordinates

[edit ]

Often the volume integral is represented in terms of a differential volume element d V = d x d y d z {\displaystyle dV=dx,円dy,円dz} {\displaystyle dV=dx,円dy,円dz}. D f ( x , y , z ) d V . {\displaystyle \iiint _{D}f(x,y,z),円dV.} {\displaystyle \iiint _{D}f(x,y,z),円dV.} It can also mean a triple integral within a region D R 3 {\displaystyle D\subset \mathbb {R} ^{3}} {\displaystyle D\subset \mathbb {R} ^{3}} of a function f ( x , y , z ) , {\displaystyle f(x,y,z),} {\displaystyle f(x,y,z),} and is usually written as: D f ( x , y , z ) d x d y d z . {\displaystyle \iiint _{D}f(x,y,z),円dx,円dy,円dz.} {\displaystyle \iiint _{D}f(x,y,z),円dx,円dy,円dz.} A volume integral in cylindrical coordinates is D f ( ρ , φ , z ) ρ d ρ d φ d z , {\displaystyle \iiint _{D}f(\rho ,\varphi ,z)\rho ,円d\rho ,円d\varphi ,円dz,} {\displaystyle \iiint _{D}f(\rho ,\varphi ,z)\rho ,円d\rho ,円d\varphi ,円dz,} and a volume integral in spherical coordinates (using the ISO convention for angles with φ {\displaystyle \varphi } {\displaystyle \varphi } as the azimuth and θ {\displaystyle \theta } {\displaystyle \theta } measured from the polar axis (see more on conventions)) has the form D f ( r , θ , φ ) r 2 sin θ d r d θ d φ . {\displaystyle \iiint _{D}f(r,\theta ,\varphi )r^{2}\sin \theta ,円dr,円d\theta ,円d\varphi .} {\displaystyle \iiint _{D}f(r,\theta ,\varphi )r^{2}\sin \theta ,円dr,円d\theta ,円d\varphi .} The triple integral can be transformed from Cartesian coordinates to any arbitrary coordinate system using the Jacobian matrix and determinant. Suppose we have a transformation of coordinates from ( x , y , z ) ( u , v , w ) {\displaystyle (x,y,z)\mapsto (u,v,w)} {\displaystyle (x,y,z)\mapsto (u,v,w)}. We can represent the integral as the following. D f ( x , y , z ) d x d y d z = D f ( u , v , w ) | ( x , y , z ) ( u , v , w ) | d u d v d w {\displaystyle \iiint _{D}f(x,y,z),円dx,円dy,円dz=\iiint _{D}f(u,v,w)\left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|,円du,円dv,円dw} {\displaystyle \iiint _{D}f(x,y,z),円dx,円dy,円dz=\iiint _{D}f(u,v,w)\left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|,円du,円dv,円dw} Where we define the Jacobian determinant to be. J = ( x , y , z ) ( u , v , w ) = | x u x v x w y u y v y w z u z v z w | {\displaystyle \mathbf {J} ={\frac {\partial (x,y,z)}{\partial (u,v,w)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}} {\displaystyle \mathbf {J} ={\frac {\partial (x,y,z)}{\partial (u,v,w)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}}

Example

[edit ]

Integrating the equation f ( x , y , z ) = 1 {\displaystyle f(x,y,z)=1} {\displaystyle f(x,y,z)=1} over a unit cube yields the following result: 0 1 0 1 0 1 1 d x d y d z = 0 1 0 1 ( 1 0 ) d y d z = 0 1 ( 1 0 ) d z = 1 0 = 1 {\displaystyle \int _{0}^{1}\int _{0}^{1}\int _{0}^{1}1,円dx,円dy,円dz=\int _{0}^{1}\int _{0}^{1}(1-0),円dy,円dz=\int _{0}^{1}\left(1-0\right)dz=1-0=1} {\displaystyle \int _{0}^{1}\int _{0}^{1}\int _{0}^{1}1,円dx,円dy,円dz=\int _{0}^{1}\int _{0}^{1}(1-0),円dy,円dz=\int _{0}^{1}\left(1-0\right)dz=1-0=1}

So the volume of the unit cube is 1 as expected. This is rather trivial however, and a volume integral is far more powerful. For instance if we have a scalar density function on the unit cube then the volume integral will give the total mass of the cube. For example for density function: { f : R 3 R f : ( x , y , z ) x + y + z {\displaystyle {\begin{cases}f:\mathbb {R} ^{3}\to \mathbb {R} \\f:(x,y,z)\mapsto x+y+z\end{cases}}} {\displaystyle {\begin{cases}f:\mathbb {R} ^{3}\to \mathbb {R} \\f:(x,y,z)\mapsto x+y+z\end{cases}}} the total mass of the cube is: 0 1 0 1 0 1 ( x + y + z ) d x d y d z = 0 1 0 1 ( 1 2 + y + z ) d y d z = 0 1 ( 1 + z ) d z = 3 2 {\displaystyle \int _{0}^{1}\int _{0}^{1}\int _{0}^{1}(x+y+z),円dx,円dy,円dz=\int _{0}^{1}\int _{0}^{1}\left({\frac {1}{2}}+y+z\right)dy,円dz=\int _{0}^{1}(1+z),円dz={\frac {3}{2}}} {\displaystyle \int _{0}^{1}\int _{0}^{1}\int _{0}^{1}(x+y+z),円dx,円dy,円dz=\int _{0}^{1}\int _{0}^{1}\left({\frac {1}{2}}+y+z\right)dy,円dz=\int _{0}^{1}(1+z),円dz={\frac {3}{2}}}

See also

[edit ]
[edit ]
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics

AltStyle によって変換されたページ (->オリジナル) /