Limit comparison test
| Part of a series of articles about | ||||||
| Calculus | ||||||
|---|---|---|---|---|---|---|
| {\displaystyle \int _{a}^{b}f'(t),円dt=f(b)-f(a)} | ||||||
|
||||||
|
||||||
|
||||||
|
Specialized |
||||||
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series.
Statement
[edit ]Suppose that we have two series {\displaystyle \Sigma _{n}a_{n}} and {\displaystyle \Sigma _{n}b_{n}} with {\displaystyle a_{n}\geq 0,b_{n}>0} for all {\displaystyle n}. Then if {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with {\displaystyle 0<c<\infty }, then either both series converge or both series diverge.[1]
Proof
[edit ]Because {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} we know that for every {\displaystyle \varepsilon >0} there is a positive integer {\displaystyle n_{0}} such that for all {\displaystyle n\geq n_{0}} we have that {\displaystyle \left|{\frac {a_{n}}{b_{n}}}-c\right|<\varepsilon }, or equivalently
- {\displaystyle -\varepsilon <{\frac {a_{n}}{b_{n}}}-c<\varepsilon }
- {\displaystyle c-\varepsilon <{\frac {a_{n}}{b_{n}}}<c+\varepsilon }
- {\displaystyle (c-\varepsilon )b_{n}<a_{n}<(c+\varepsilon )b_{n}}
As {\displaystyle c>0} we can choose {\displaystyle \varepsilon } to be sufficiently small such that {\displaystyle c-\varepsilon } is positive. So {\displaystyle b_{n}<{\frac {1}{c-\varepsilon }}a_{n}} and by the direct comparison test, if {\displaystyle \sum _{n}a_{n}} converges then so does {\displaystyle \sum _{n}b_{n}}.
Similarly {\displaystyle a_{n}<(c+\varepsilon )b_{n}}, so if {\displaystyle \sum _{n}a_{n}} diverges, again by the direct comparison test, so does {\displaystyle \sum _{n}b_{n}}.
That is, both series converge or both series diverge.
Example
[edit ]We want to determine if the series {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}+2n}}} converges. For this we compare it with the convergent series {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}={\frac {\pi ^{2}}{6}}}
As {\displaystyle \lim _{n\to \infty }{\frac {1}{n^{2}+2n}}{\frac {n^{2}}{1}}=1>0} we have that the original series also converges.
One-sided version
[edit ]One can state a one-sided comparison test by using limit superior. Let {\displaystyle a_{n},b_{n}\geq 0} for all {\displaystyle n}. Then if {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with {\displaystyle 0\leq c<\infty } and {\displaystyle \Sigma _{n}b_{n}} converges, necessarily {\displaystyle \Sigma _{n}a_{n}} converges.
Example
[edit ]Let {\displaystyle a_{n}={\frac {1-(-1)^{n}}{n^{2}}}} and {\displaystyle b_{n}={\frac {1}{n^{2}}}} for all natural numbers {\displaystyle n}. Now {\displaystyle \lim _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\lim _{n\to \infty }(1-(-1)^{n})} does not exist, so we cannot apply the standard comparison test. However, {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\limsup _{n\to \infty }(1-(-1)^{n})=2\in [0,\infty )} and since {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{2}}}} converges, the one-sided comparison test implies that {\displaystyle \sum _{n=1}^{\infty }{\frac {1-(-1)^{n}}{n^{2}}}} converges.
Converse of the one-sided comparison test
[edit ]Let {\displaystyle a_{n},b_{n}\geq 0} for all {\displaystyle n}. If {\displaystyle \Sigma _{n}a_{n}} diverges and {\displaystyle \Sigma _{n}b_{n}} converges, then necessarily {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=\infty }, that is, {\displaystyle \liminf _{n\to \infty }{\frac {b_{n}}{a_{n}}}=0}. The essential content here is that in some sense the numbers {\displaystyle a_{n}} are larger than the numbers {\displaystyle b_{n}}.
Example
[edit ]Let {\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}} be analytic in the unit disc {\displaystyle D=\{z\in \mathbb {C} :|z|<1\}} and have image of finite area. By Parseval's formula the area of the image of {\displaystyle f} is proportional to {\displaystyle \sum _{n=1}^{\infty }n|a_{n}|^{2}}. Moreover, {\displaystyle \sum _{n=1}^{\infty }1/n} diverges. Therefore, by the converse of the comparison test, we have {\displaystyle \liminf _{n\to \infty }{\frac {n|a_{n}|^{2}}{1/n}}=\liminf _{n\to \infty }(n|a_{n}|)^{2}=0}, that is, {\displaystyle \liminf _{n\to \infty }n|a_{n}|=0}.
See also
[edit ]References
[edit ]- ^ Swokowski, Earl (1983), Calculus with analytic geometry (Alternate ed.), Prindle, Weber & Schmidt, p. 516, ISBN 0-87150-341-7
Further reading
[edit ]- Rinaldo B. Schinazi: From Calculus to Analysis. Springer, 2011, ISBN 9780817682897, pp. 50
- Michele Longo and Vincenzo Valori: The Comparison Test: Not Just for Nonnegative Series. Mathematics Magazine, Vol. 79, No. 3 (Jun., 2006), pp. 205–210 (JSTOR)
- J. Marshall Ash: The Limit Comparison Test Needs Positivity. Mathematics Magazine, Vol. 85, No. 5 (December 2012), pp. 374–375 (JSTOR)