Jump to content
Wikipedia The Free Encyclopedia

List of limits

From Wikipedia, the free encyclopedia
(Redirected from Table of limits)
This article needs additional citations for verification . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "List of limits" – news · newspapers · books · scholar · JSTOR
(August 2019) (Learn how and when to remove this message)
This list is incomplete; you can help by adding missing items. (February 2011)

This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.

Limits for general functions

[edit ]
[edit ]

lim x c f ( x ) = L {\displaystyle \lim _{x\to c}f(x)=L} {\displaystyle \lim _{x\to c}f(x)=L} if and only if ε > 0   δ > 0 : 0 < | x c | < δ | f ( x ) L | < ε {\displaystyle \forall \varepsilon >0\ \exists \delta >0:0<|x-c|<\delta \implies |f(x)-L|<\varepsilon } {\displaystyle \forall \varepsilon >0\ \exists \delta >0:0<|x-c|<\delta \implies |f(x)-L|<\varepsilon }. This is the (ε, δ)-definition of limit.

The limit superior and limit inferior of a sequence are defined as lim sup n x n = lim n ( sup m n x m ) {\displaystyle \limsup _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\sup _{m\geq n}x_{m}\right)} {\displaystyle \limsup _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\sup _{m\geq n}x_{m}\right)} and lim inf n x n = lim n ( inf m n x m ) {\displaystyle \liminf _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\inf _{m\geq n}x_{m}\right)} {\displaystyle \liminf _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\inf _{m\geq n}x_{m}\right)}.

A function, f ( x ) {\displaystyle f(x)} {\displaystyle f(x)}, is said to be continuous at a point, c, if lim x c f ( x ) = f ( c ) . {\displaystyle \lim _{x\to c}f(x)=f(c).} {\displaystyle \lim _{x\to c}f(x)=f(c).}

Operations on a single known limit

[edit ]

If lim x c f ( x ) = L {\displaystyle \lim _{x\to c}f(x)=L} {\displaystyle \lim _{x\to c}f(x)=L} then:

  • lim x c [ f ( x ) ± a ] = L ± a {\displaystyle \lim _{x\to c},円[f(x)\pm a]=L\pm a} {\displaystyle \lim _{x\to c},円[f(x)\pm a]=L\pm a}
  • lim x c a f ( x ) = a L {\displaystyle \lim _{x\to c},円af(x)=aL} {\displaystyle \lim _{x\to c},円af(x)=aL}[1] [2] [3]
  • lim x c 1 f ( x ) = 1 L {\displaystyle \lim _{x\to c}{\frac {1}{f(x)}}={\frac {1}{L}}} {\displaystyle \lim _{x\to c}{\frac {1}{f(x)}}={\frac {1}{L}}}[4] if L is not equal to 0.
  • lim x c f ( x ) n = L n {\displaystyle \lim _{x\to c},円f(x)^{n}=L^{n}} {\displaystyle \lim _{x\to c},円f(x)^{n}=L^{n}} if n is a positive integer[1] [2] [3]
  • lim x c f ( x ) 1 n = L 1 n {\displaystyle \lim _{x\to c},円f(x)^{1 \over n}=L^{1 \over n}} {\displaystyle \lim _{x\to c},円f(x)^{1 \over n}=L^{1 \over n}} if n is a positive integer, and if n is even, then L > 0.[1] [3]

In general, if g(x) is continuous at L and lim x c f ( x ) = L {\displaystyle \lim _{x\to c}f(x)=L} {\displaystyle \lim _{x\to c}f(x)=L} then

  • lim x c g ( f ( x ) ) = g ( L ) {\displaystyle \lim _{x\to c}g\left(f(x)\right)=g(L)} {\displaystyle \lim _{x\to c}g\left(f(x)\right)=g(L)}[1] [2]

Operations on two known limits

[edit ]

If lim x c f ( x ) = L 1 {\displaystyle \lim _{x\to c}f(x)=L_{1}} {\displaystyle \lim _{x\to c}f(x)=L_{1}} and lim x c g ( x ) = L 2 {\displaystyle \lim _{x\to c}g(x)=L_{2}} {\displaystyle \lim _{x\to c}g(x)=L_{2}} then:

  • lim x c [ f ( x ) ± g ( x ) ] = L 1 ± L 2 {\displaystyle \lim _{x\to c},円[f(x)\pm g(x)]=L_{1}\pm L_{2}} {\displaystyle \lim _{x\to c},円[f(x)\pm g(x)]=L_{1}\pm L_{2}}[1] [2] [3]
  • lim x c [ f ( x ) g ( x ) ] = L 1 L 2 {\displaystyle \lim _{x\to c},円[f(x)g(x)]=L_{1}\cdot L_{2}} {\displaystyle \lim _{x\to c},円[f(x)g(x)]=L_{1}\cdot L_{2}}[1] [2] [3]
  • lim x c f ( x ) g ( x ) = L 1 L 2  if  L 2 0 {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\text{ if }}L_{2}\neq 0} {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\text{ if }}L_{2}\neq 0}[1] [2] [3]

Limits involving derivatives or infinitesimal changes

[edit ]

In these limits, the infinitesimal change h {\displaystyle h} {\displaystyle h} is often denoted Δ x {\displaystyle \Delta x} {\displaystyle \Delta x} or δ x {\displaystyle \delta x} {\displaystyle \delta x}. If f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} is differentiable at x {\displaystyle x} {\displaystyle x},

  • lim h 0 f ( x + h ) f ( x ) h = f ( x ) {\displaystyle \lim _{h\to 0}{f(x+h)-f(x) \over h}=f'(x)} {\displaystyle \lim _{h\to 0}{f(x+h)-f(x) \over h}=f'(x)}. This is the definition of the derivative. All differentiation rules can also be reframed as rules involving limits. For example, if g(x) is differentiable at x,
    • lim h 0 f g ( x + h ) f g ( x ) h = f [ g ( x ) ] g ( x ) {\displaystyle \lim _{h\to 0}{f\circ g(x+h)-f\circ g(x) \over h}=f'[g(x)]g'(x)} {\displaystyle \lim _{h\to 0}{f\circ g(x+h)-f\circ g(x) \over h}=f'[g(x)]g'(x)}. This is the chain rule.
    • lim h 0 f ( x + h ) g ( x + h ) f ( x ) g ( x ) h = f ( x ) g ( x ) + f ( x ) g ( x ) {\displaystyle \lim _{h\to 0}{f(x+h)g(x+h)-f(x)g(x) \over h}=f'(x)g(x)+f(x)g'(x)} {\displaystyle \lim _{h\to 0}{f(x+h)g(x+h)-f(x)g(x) \over h}=f'(x)g(x)+f(x)g'(x)}. This is the product rule.
  • lim h 0 ( f ( x + h ) f ( x ) ) 1 / h = exp ( f ( x ) f ( x ) ) {\displaystyle \lim _{h\to 0}\left({\frac {f(x+h)}{f(x)}}\right)^{1/h}=\exp \left({\frac {f'(x)}{f(x)}}\right)} {\displaystyle \lim _{h\to 0}\left({\frac {f(x+h)}{f(x)}}\right)^{1/h}=\exp \left({\frac {f'(x)}{f(x)}}\right)}
  • lim h 0 ( f ( e h x ) f ( x ) ) 1 / h = exp ( x f ( x ) f ( x ) ) {\displaystyle \lim _{h\to 0}{\left({f(e^{h}x) \over {f(x)}}\right)^{1/h}}=\exp \left({\frac {xf'(x)}{f(x)}}\right)} {\displaystyle \lim _{h\to 0}{\left({f(e^{h}x) \over {f(x)}}\right)^{1/h}}=\exp \left({\frac {xf'(x)}{f(x)}}\right)}

If f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} and g ( x ) {\displaystyle g(x)} {\displaystyle g(x)} are differentiable on an open interval containing c, except possibly c itself, and lim x c f ( x ) = lim x c g ( x ) = 0  or  ± {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty } {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty }, L'Hôpital's rule can be used:

  • lim x c f ( x ) g ( x ) = lim x c f ( x ) g ( x ) {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}} {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}}[2]

Inequalities

[edit ]

If f ( x ) g ( x ) {\displaystyle f(x)\leq g(x)} {\displaystyle f(x)\leq g(x)} for all x in an interval that contains c, except possibly c itself, and the limit of f ( x ) {\displaystyle f(x)} {\displaystyle f(x)} and g ( x ) {\displaystyle g(x)} {\displaystyle g(x)} both exist at c, then[5] lim x c f ( x ) lim x c g ( x ) {\displaystyle \lim _{x\to c}f(x)\leq \lim _{x\to c}g(x)} {\displaystyle \lim _{x\to c}f(x)\leq \lim _{x\to c}g(x)}

If lim x c f ( x ) = lim x c h ( x ) = L {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and f ( x ) g ( x ) h ( x ) {\displaystyle f(x)\leq g(x)\leq h(x)} {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that contains c, except possibly c itself, lim x c g ( x ) = L . {\displaystyle \lim _{x\to c}g(x)=L.} {\displaystyle \lim _{x\to c}g(x)=L.} This is known as the squeeze theorem.[1] [2] This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c.

Polynomials and functions of the form xa

[edit ]
  • lim x c a = a {\displaystyle \lim _{x\to c}a=a} {\displaystyle \lim _{x\to c}a=a}[1] [2] [3]

Polynomials in x

[edit ]
  • lim x c x = c {\displaystyle \lim _{x\to c}x=c} {\displaystyle \lim _{x\to c}x=c}[1] [2] [3]
  • lim x c ( a x + b ) = a c + b {\displaystyle \lim _{x\to c}(ax+b)=ac+b} {\displaystyle \lim _{x\to c}(ax+b)=ac+b}
  • lim x c x n = c n {\displaystyle \lim _{x\to c}x^{n}=c^{n}} {\displaystyle \lim _{x\to c}x^{n}=c^{n}} if n is a positive integer[5]
  • lim x x / a = { , a > 0 does not exist , a = 0 , a < 0 {\displaystyle \lim _{x\to \infty }x/a={\begin{cases}\infty ,&a>0\\{\text{does not exist}},&a=0\\-\infty ,&a<0\end{cases}}} {\displaystyle \lim _{x\to \infty }x/a={\begin{cases}\infty ,&a>0\\{\text{does not exist}},&a=0\\-\infty ,&a<0\end{cases}}}

In general, if p ( x ) {\displaystyle p(x)} {\displaystyle p(x)} is a polynomial then, by the continuity of polynomials,[5] lim x c p ( x ) = p ( c ) {\displaystyle \lim _{x\to c}p(x)=p(c)} {\displaystyle \lim _{x\to c}p(x)=p(c)} This is also true for rational functions, as they are continuous on their domains.[5]

Functions of the form xa

[edit ]
  • lim x c x a = c a . {\displaystyle \lim _{x\to c}x^{a}=c^{a}.} {\displaystyle \lim _{x\to c}x^{a}=c^{a}.}[5] In particular,
    • lim x x a = { , a > 0 1 , a = 0 0 , a < 0 {\displaystyle \lim _{x\to \infty }x^{a}={\begin{cases}\infty ,&a>0\1,円&a=0\0,円&a<0\end{cases}}} {\displaystyle \lim _{x\to \infty }x^{a}={\begin{cases}\infty ,&a>0\1,円&a=0\0,円&a<0\end{cases}}}
  • lim x c x 1 / a = c 1 / a {\displaystyle \lim _{x\to c}x^{1/a}=c^{1/a}} {\displaystyle \lim _{x\to c}x^{1/a}=c^{1/a}}.[5] In particular,
    • lim x x 1 / a = lim x x a =  for any  a > 0 {\displaystyle \lim _{x\to \infty }x^{1/a}=\lim _{x\to \infty }{\sqrt[{a}]{x}}=\infty {\text{ for any }}a>0} {\displaystyle \lim _{x\to \infty }x^{1/a}=\lim _{x\to \infty }{\sqrt[{a}]{x}}=\infty {\text{ for any }}a>0}[6]
  • lim x 0 + x n = lim x 0 + 1 x n = + {\displaystyle \lim _{x\to 0^{+}}x^{-n}=\lim _{x\to 0^{+}}{\frac {1}{x^{n}}}=+\infty } {\displaystyle \lim _{x\to 0^{+}}x^{-n}=\lim _{x\to 0^{+}}{\frac {1}{x^{n}}}=+\infty }
  • lim x 0 x n = lim x 0 1 x n = { , if  n  is odd + , if  n  is even {\displaystyle \lim _{x\to 0^{-}}x^{-n}=\lim _{x\to 0^{-}}{\frac {1}{x^{n}}}={\begin{cases}-\infty ,&{\text{if }}n{\text{ is odd}}\\+\infty ,&{\text{if }}n{\text{ is even}}\end{cases}}} {\displaystyle \lim _{x\to 0^{-}}x^{-n}=\lim _{x\to 0^{-}}{\frac {1}{x^{n}}}={\begin{cases}-\infty ,&{\text{if }}n{\text{ is odd}}\\+\infty ,&{\text{if }}n{\text{ is even}}\end{cases}}}
  • lim x a x 1 = lim x a / x = 0  for any real  a {\displaystyle \lim _{x\to \infty }ax^{-1}=\lim _{x\to \infty }a/x=0{\text{ for any real }}a} {\displaystyle \lim _{x\to \infty }ax^{-1}=\lim _{x\to \infty }a/x=0{\text{ for any real }}a}

Exponential functions

[edit ]

Functions of the form ag(x)

[edit ]
  • lim x c e x = e c {\displaystyle \lim _{x\to c}e^{x}=e^{c}} {\displaystyle \lim _{x\to c}e^{x}=e^{c}}, due to the continuity of e x {\displaystyle e^{x}} {\displaystyle e^{x}}
  • lim x a x = { , a > 1 1 , a = 1 0 , 0 < a < 1 {\displaystyle \lim _{x\to \infty }a^{x}={\begin{cases}\infty ,&a>1\1,円&a=1\0,円&0<a<1\end{cases}}} {\displaystyle \lim _{x\to \infty }a^{x}={\begin{cases}\infty ,&a>1\1,円&a=1\0,円&0<a<1\end{cases}}}
  • lim x a x = { 0 , a > 1 1 , a = 1 , 0 < a < 1 {\displaystyle \lim _{x\to \infty }a^{-x}={\begin{cases}0,&a>1\1,円&a=1\\\infty ,&0<a<1\end{cases}}} {\displaystyle \lim _{x\to \infty }a^{-x}={\begin{cases}0,&a>1\1,円&a=1\\\infty ,&0<a<1\end{cases}}}[6]
  • lim x a x = lim x a 1 / x = { 1 , a > 0 0 , a = 0 does not exist , a < 0 {\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{a}}=\lim _{x\to \infty }{a}^{1/x}={\begin{cases}1,&a>0\0,円&a=0\\{\text{does not exist}},&a<0\end{cases}}} {\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{a}}=\lim _{x\to \infty }{a}^{1/x}={\begin{cases}1,&a>0\0,円&a=0\\{\text{does not exist}},&a<0\end{cases}}}

Functions of the form xg(x)

[edit ]
  • lim x x x = lim x x 1 / x = 1 {\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{x}}=\lim _{x\to \infty }{x}^{1/x}=1} {\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{x}}=\lim _{x\to \infty }{x}^{1/x}=1}

Functions of the form f(x)g(x)

[edit ]
  • lim x + ( x x + k ) x = e k {\displaystyle \lim _{x\to +\infty }\left({\frac {x}{x+k}}\right)^{x}=e^{-k}} {\displaystyle \lim _{x\to +\infty }\left({\frac {x}{x+k}}\right)^{x}=e^{-k}}[2]
  • lim x 0 ( 1 + x ) 1 x = e {\displaystyle \lim _{x\to 0}\left(1+x\right)^{\frac {1}{x}}=e} {\displaystyle \lim _{x\to 0}\left(1+x\right)^{\frac {1}{x}}=e}[2]
  • lim x 0 ( 1 + k x ) m x = e m k {\displaystyle \lim _{x\to 0}\left(1+kx\right)^{\frac {m}{x}}=e^{mk}} {\displaystyle \lim _{x\to 0}\left(1+kx\right)^{\frac {m}{x}}=e^{mk}}
  • lim x + ( 1 + 1 x ) x = e {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {1}{x}}\right)^{x}=e} {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {1}{x}}\right)^{x}=e}[7]
  • lim x + ( 1 1 x ) x = 1 e {\displaystyle \lim _{x\to +\infty }\left(1-{\frac {1}{x}}\right)^{x}={\frac {1}{e}}} {\displaystyle \lim _{x\to +\infty }\left(1-{\frac {1}{x}}\right)^{x}={\frac {1}{e}}}
  • lim x + ( 1 + k x ) m x = e m k {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}} {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}}[6]
  • lim x 0 ( 1 + a ( e x 1 ) ) 1 x = e a {\displaystyle \lim _{x\to 0}\left(1+a\left({e^{-x}-1}\right)\right)^{-{\frac {1}{x}}}=e^{a}} {\displaystyle \lim _{x\to 0}\left(1+a\left({e^{-x}-1}\right)\right)^{-{\frac {1}{x}}}=e^{a}}. This limit can be derived from this limit.

Sums, products and composites

[edit ]
  • lim x 0 x e x = 0 {\displaystyle \lim _{x\to 0}xe^{-x}=0} {\displaystyle \lim _{x\to 0}xe^{-x}=0}
  • lim x x e x = 0 {\displaystyle \lim _{x\to \infty }xe^{-x}=0} {\displaystyle \lim _{x\to \infty }xe^{-x}=0}
  • lim x 0 ( a x 1 x ) = ln a , {\displaystyle \lim _{x\to 0}\left({\frac {a^{x}-1}{x}}\right)=\ln {a},} {\displaystyle \lim _{x\to 0}\left({\frac {a^{x}-1}{x}}\right)=\ln {a},} for all positive a.[4] [7]
  • lim x 0 ( e x 1 x ) = 1 {\displaystyle \lim _{x\to 0}\left({\frac {e^{x}-1}{x}}\right)=1} {\displaystyle \lim _{x\to 0}\left({\frac {e^{x}-1}{x}}\right)=1}
  • lim x 0 ( e a x 1 x ) = a {\displaystyle \lim _{x\to 0}\left({\frac {e^{ax}-1}{x}}\right)=a} {\displaystyle \lim _{x\to 0}\left({\frac {e^{ax}-1}{x}}\right)=a}

Logarithmic functions

[edit ]

Natural logarithms

[edit ]
  • lim x c ln x = ln c {\displaystyle \lim _{x\to c}\ln {x}=\ln c} {\displaystyle \lim _{x\to c}\ln {x}=\ln c}, due to the continuity of ln x {\displaystyle \ln {x}} {\displaystyle \ln {x}}. In particular,
    • lim x 0 + log x = {\displaystyle \lim _{x\to 0^{+}}\log x=-\infty } {\displaystyle \lim _{x\to 0^{+}}\log x=-\infty }
    • lim x log x = {\displaystyle \lim _{x\to \infty }\log x=\infty } {\displaystyle \lim _{x\to \infty }\log x=\infty }
  • lim x 1 ln ( x ) x 1 = 1 {\displaystyle \lim _{x\to 1}{\frac {\ln(x)}{x-1}}=1} {\displaystyle \lim _{x\to 1}{\frac {\ln(x)}{x-1}}=1}
  • lim x 0 ln ( x + 1 ) x = 1 {\displaystyle \lim _{x\to 0}{\frac {\ln(x+1)}{x}}=1} {\displaystyle \lim _{x\to 0}{\frac {\ln(x+1)}{x}}=1}[7]
  • lim x 0 ln ( 1 + a ( e x 1 ) ) x = a {\displaystyle \lim _{x\to 0}{\frac {-\ln \left(1+a\left({e^{-x}-1}\right)\right)}{x}}=a} {\displaystyle \lim _{x\to 0}{\frac {-\ln \left(1+a\left({e^{-x}-1}\right)\right)}{x}}=a}. This limit follows from L'Hôpital's rule.
  • lim x 0 x ln x = 0 {\displaystyle \lim _{x\to 0}x\ln x=0} {\displaystyle \lim _{x\to 0}x\ln x=0}, hence lim x 0 x x = 1 {\displaystyle \lim _{x\to 0}x^{x}=1} {\displaystyle \lim _{x\to 0}x^{x}=1}
  • lim x ln x x = 0 {\displaystyle \lim _{x\to \infty }{\frac {\ln x}{x}}=0} {\displaystyle \lim _{x\to \infty }{\frac {\ln x}{x}}=0}[6]

Logarithms to arbitrary bases

[edit ]

For b > 1,

  • lim x 0 + log b x = {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-\infty } {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-\infty }
  • lim x log b x = {\displaystyle \lim _{x\to \infty }\log _{b}x=\infty } {\displaystyle \lim _{x\to \infty }\log _{b}x=\infty }

For b < 1,

  • lim x 0 + log b x = {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=\infty } {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=\infty }
  • lim x log b x = {\displaystyle \lim _{x\to \infty }\log _{b}x=-\infty } {\displaystyle \lim _{x\to \infty }\log _{b}x=-\infty }

Both cases can be generalized to:

  • lim x 0 + log b x = F ( b ) {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-F(b)\infty } {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-F(b)\infty }
  • lim x log b x = F ( b ) {\displaystyle \lim _{x\to \infty }\log _{b}x=F(b)\infty } {\displaystyle \lim _{x\to \infty }\log _{b}x=F(b)\infty }

where F ( x ) = 2 H ( x 1 ) 1 {\displaystyle F(x)=2H(x-1)-1} {\displaystyle F(x)=2H(x-1)-1} and H ( x ) {\displaystyle H(x)} {\displaystyle H(x)} is the Heaviside step function

Trigonometric functions

[edit ]

If x {\displaystyle x} {\displaystyle x} is expressed in radians:

  • lim x a sin x = sin a {\displaystyle \lim _{x\to a}\sin x=\sin a} {\displaystyle \lim _{x\to a}\sin x=\sin a}
  • lim x a cos x = cos a {\displaystyle \lim _{x\to a}\cos x=\cos a} {\displaystyle \lim _{x\to a}\cos x=\cos a}

These limits both follow from the continuity of sin and cos.

  • lim x 0 sin x x = 1 {\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1} {\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}.[7] [8] Or, in general,
    • lim x 0 sin a x a x = 1 {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{ax}}=1} {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{ax}}=1}, for a not equal to 0.
    • lim x 0 sin a x x = a {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{x}}=a} {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{x}}=a}
    • lim x 0 sin a x b x = a b {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{bx}}={\frac {a}{b}}} {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{bx}}={\frac {a}{b}}}, for b not equal to 0.
  • lim x x sin ( 1 x ) = 1 {\displaystyle \lim _{x\to \infty }x\sin \left({\frac {1}{x}}\right)=1} {\displaystyle \lim _{x\to \infty }x\sin \left({\frac {1}{x}}\right)=1}
  • lim x 0 1 cos x x = lim x 0 cos x 1 x = 0 {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=\lim _{x\to 0}{\frac {\cos x-1}{x}}=0} {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=\lim _{x\to 0}{\frac {\cos x-1}{x}}=0}[4] [8] [9]
  • lim x 0 1 cos x x 2 = 1 2 {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x^{2}}}={\frac {1}{2}}} {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x^{2}}}={\frac {1}{2}}}
  • lim x n ± tan ( π x + π 2 ) = {\displaystyle \lim _{x\to n^{\pm }}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty } {\displaystyle \lim _{x\to n^{\pm }}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty }, for integer n.
  • lim x 0 tan x x = 1 {\displaystyle \lim _{x\to 0}{\frac {\tan x}{x}}=1} {\displaystyle \lim _{x\to 0}{\frac {\tan x}{x}}=1}. Or, in general,
    • lim x 0 tan a x a x = 1 {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{ax}}=1} {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{ax}}=1}, for a not equal to 0.
    • lim x 0 tan a x b x = a b {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{bx}}={\frac {a}{b}}} {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{bx}}={\frac {a}{b}}}, for b not equal to 0.
  • lim n   sin sin sin ( x 0 ) n = 0 {\displaystyle \lim _{n\to \infty }\ \underbrace {\sin \sin \cdots \sin(x_{0})} _{n}=0} {\displaystyle \lim _{n\to \infty }\ \underbrace {\sin \sin \cdots \sin(x_{0})} _{n}=0}, where x0 is an arbitrary real number.
  • lim n   cos cos cos ( x 0 ) n = d {\displaystyle \lim _{n\to \infty }\ \underbrace {\cos \cos \cdots \cos(x_{0})} _{n}=d} {\displaystyle \lim _{n\to \infty }\ \underbrace {\cos \cos \cdots \cos(x_{0})} _{n}=d}, where d is the Dottie number. x0 can be any arbitrary real number.

Sums

[edit ]

In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence.

  • lim n k = 1 n 1 k = {\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k}}=\infty } {\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k}}=\infty }. This is known as the harmonic series.[6]
  • lim n ( k = 1 n 1 k log n ) = γ {\displaystyle \lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\log n\right)=\gamma } {\displaystyle \lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\log n\right)=\gamma }. This is the Euler Mascheroni constant.

Notable special limits

[edit ]
  • lim n n n ! n = e {\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}=e} {\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}=e}
  • lim n ( n ! ) 1 / n = {\displaystyle \lim _{n\to \infty }\left(n!\right)^{1/n}=\infty } {\displaystyle \lim _{n\to \infty }\left(n!\right)^{1/n}=\infty }. This can be proven by considering the inequality e x x n n ! {\displaystyle e^{x}\geq {\frac {x^{n}}{n!}}} {\displaystyle e^{x}\geq {\frac {x^{n}}{n!}}} at x = n {\displaystyle x=n} {\displaystyle x=n}.
  • lim n 2 n 2 2 + 2 + + 2 n = π {\displaystyle \lim _{n\to \infty },2円^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}=\pi } {\displaystyle \lim _{n\to \infty },2円^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}=\pi }. This can be derived from Viète's formula for π.

Limiting behavior

[edit ]

Asymptotic equivalences

[edit ]

Asymptotic equivalences, f ( x ) g ( x ) {\displaystyle f(x)\sim g(x)} {\displaystyle f(x)\sim g(x)}, are true if lim x f ( x ) g ( x ) = 1 {\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=1} {\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=1}. Therefore, they can also be reframed as limits. Some notable asymptotic equivalences include

  • lim x x / ln x π ( x ) = 1 {\displaystyle \lim _{x\to \infty }{\frac {x/\ln x}{\pi (x)}}=1} {\displaystyle \lim _{x\to \infty }{\frac {x/\ln x}{\pi (x)}}=1}, due to the prime number theorem, π ( x ) x ln x {\displaystyle \pi (x)\sim {\frac {x}{\ln x}}} {\displaystyle \pi (x)\sim {\frac {x}{\ln x}}}, where π(x) is the prime counting function.
  • lim n 2 π n ( n e ) n n ! = 1 {\displaystyle \lim _{n\to \infty }{\frac {{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}{n!}}=1} {\displaystyle \lim _{n\to \infty }{\frac {{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}{n!}}=1}, due to Stirling's approximation, n ! 2 π n ( n e ) n {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}} {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}.

Big O notation

[edit ]

The behaviour of functions described by Big O notation can also be described by limits. For example

  • f ( x ) O ( g ( x ) ) {\displaystyle f(x)\in {\mathcal {O}}(g(x))} {\displaystyle f(x)\in {\mathcal {O}}(g(x))} if lim sup x | f ( x ) | g ( x ) < {\displaystyle \limsup _{x\to \infty }{\frac {|f(x)|}{g(x)}}<\infty } {\displaystyle \limsup _{x\to \infty }{\frac {|f(x)|}{g(x)}}<\infty }

References

[edit ]
  1. ^ a b c d e f g h i j "Basic Limit Laws". math.oregonstate.edu. Retrieved 2019年07月31日.
  2. ^ a b c d e f g h i j k l "Limits Cheat Sheet - Symbolab". www.symbolab.com. Retrieved 2019年07月31日.
  3. ^ a b c d e f g h "Section 2.3: Calculating Limits using the Limit Laws" (PDF).
  4. ^ a b c "Limits and Derivatives Formulas" (PDF).
  5. ^ a b c d e f "Limits Theorems". archives.math.utk.edu. Retrieved 2019年07月31日.
  6. ^ a b c d e "Some Special Limits". www.sosmath.com. Retrieved 2019年07月31日.
  7. ^ a b c d "SOME IMPORTANT LIMITS - Math Formulas - Mathematics Formulas - Basic Math Formulas". www.pioneermathematics.com. Retrieved 2019年07月31日.
  8. ^ a b "World Web Math: Useful Trig Limits". Massachusetts Institute of Technology . Retrieved 2023年03月20日.
  9. ^ "Calculus I - Proof of Trig Limits" . Retrieved 2023年03月20日.
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics

AltStyle によって変換されたページ (->オリジナル) /