List of limits
Find sources: "List of limits" – news · newspapers · books · scholar · JSTOR (August 2019) (Learn how and when to remove this message)
This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.
Limits for general functions
[edit ]Definitions of limits and related concepts
[edit ]{\displaystyle \lim _{x\to c}f(x)=L} if and only if {\displaystyle \forall \varepsilon >0\ \exists \delta >0:0<|x-c|<\delta \implies |f(x)-L|<\varepsilon }. This is the (ε, δ)-definition of limit.
The limit superior and limit inferior of a sequence are defined as {\displaystyle \limsup _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\sup _{m\geq n}x_{m}\right)} and {\displaystyle \liminf _{n\to \infty }x_{n}=\lim _{n\to \infty }\left(\inf _{m\geq n}x_{m}\right)}.
A function, {\displaystyle f(x)}, is said to be continuous at a point, c, if {\displaystyle \lim _{x\to c}f(x)=f(c).}
Operations on a single known limit
[edit ]If {\displaystyle \lim _{x\to c}f(x)=L} then:
- {\displaystyle \lim _{x\to c},円[f(x)\pm a]=L\pm a}
- {\displaystyle \lim _{x\to c},円af(x)=aL}[1] [2] [3]
- {\displaystyle \lim _{x\to c}{\frac {1}{f(x)}}={\frac {1}{L}}}[4] if L is not equal to 0.
- {\displaystyle \lim _{x\to c},円f(x)^{n}=L^{n}} if n is a positive integer[1] [2] [3]
- {\displaystyle \lim _{x\to c},円f(x)^{1 \over n}=L^{1 \over n}} if n is a positive integer, and if n is even, then L > 0.[1] [3]
In general, if g(x) is continuous at L and {\displaystyle \lim _{x\to c}f(x)=L} then
Operations on two known limits
[edit ]If {\displaystyle \lim _{x\to c}f(x)=L_{1}} and {\displaystyle \lim _{x\to c}g(x)=L_{2}} then:
- {\displaystyle \lim _{x\to c},円[f(x)\pm g(x)]=L_{1}\pm L_{2}}[1] [2] [3]
- {\displaystyle \lim _{x\to c},円[f(x)g(x)]=L_{1}\cdot L_{2}}[1] [2] [3]
- {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}={\frac {L_{1}}{L_{2}}}\qquad {\text{ if }}L_{2}\neq 0}[1] [2] [3]
Limits involving derivatives or infinitesimal changes
[edit ]In these limits, the infinitesimal change {\displaystyle h} is often denoted {\displaystyle \Delta x} or {\displaystyle \delta x}. If {\displaystyle f(x)} is differentiable at {\displaystyle x},
- {\displaystyle \lim _{h\to 0}{f(x+h)-f(x) \over h}=f'(x)}. This is the definition of the derivative. All differentiation rules can also be reframed as rules involving limits. For example, if g(x) is differentiable at x,
- {\displaystyle \lim _{h\to 0}{f\circ g(x+h)-f\circ g(x) \over h}=f'[g(x)]g'(x)}. This is the chain rule.
- {\displaystyle \lim _{h\to 0}{f(x+h)g(x+h)-f(x)g(x) \over h}=f'(x)g(x)+f(x)g'(x)}. This is the product rule.
- {\displaystyle \lim _{h\to 0}\left({\frac {f(x+h)}{f(x)}}\right)^{1/h}=\exp \left({\frac {f'(x)}{f(x)}}\right)}
- {\displaystyle \lim _{h\to 0}{\left({f(e^{h}x) \over {f(x)}}\right)^{1/h}}=\exp \left({\frac {xf'(x)}{f(x)}}\right)}
If {\displaystyle f(x)} and {\displaystyle g(x)} are differentiable on an open interval containing c, except possibly c itself, and {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}g(x)=0{\text{ or }}\pm \infty }, L'Hôpital's rule can be used:
- {\displaystyle \lim _{x\to c}{\frac {f(x)}{g(x)}}=\lim _{x\to c}{\frac {f'(x)}{g'(x)}}}[2]
Inequalities
[edit ]If {\displaystyle f(x)\leq g(x)} for all x in an interval that contains c, except possibly c itself, and the limit of {\displaystyle f(x)} and {\displaystyle g(x)} both exist at c, then[5] {\displaystyle \lim _{x\to c}f(x)\leq \lim _{x\to c}g(x)}
If {\displaystyle \lim _{x\to c}f(x)=\lim _{x\to c}h(x)=L} and {\displaystyle f(x)\leq g(x)\leq h(x)} for all x in an open interval that contains c, except possibly c itself, {\displaystyle \lim _{x\to c}g(x)=L.} This is known as the squeeze theorem.[1] [2] This applies even in the cases that f(x) and g(x) take on different values at c, or are discontinuous at c.
Polynomials and functions of the form xa
[edit ]Polynomials in x
[edit ]- {\displaystyle \lim _{x\to c}x=c}[1] [2] [3]
- {\displaystyle \lim _{x\to c}(ax+b)=ac+b}
- {\displaystyle \lim _{x\to c}x^{n}=c^{n}} if n is a positive integer[5]
- {\displaystyle \lim _{x\to \infty }x/a={\begin{cases}\infty ,&a>0\\{\text{does not exist}},&a=0\\-\infty ,&a<0\end{cases}}}
In general, if {\displaystyle p(x)} is a polynomial then, by the continuity of polynomials,[5] {\displaystyle \lim _{x\to c}p(x)=p(c)} This is also true for rational functions, as they are continuous on their domains.[5]
Functions of the form xa
[edit ]- {\displaystyle \lim _{x\to c}x^{a}=c^{a}.}[5] In particular,
- {\displaystyle \lim _{x\to \infty }x^{a}={\begin{cases}\infty ,&a>0\1,円&a=0\0,円&a<0\end{cases}}}
- {\displaystyle \lim _{x\to c}x^{1/a}=c^{1/a}}.[5] In particular,
- {\displaystyle \lim _{x\to \infty }x^{1/a}=\lim _{x\to \infty }{\sqrt[{a}]{x}}=\infty {\text{ for any }}a>0}[6]
- {\displaystyle \lim _{x\to 0^{+}}x^{-n}=\lim _{x\to 0^{+}}{\frac {1}{x^{n}}}=+\infty }
- {\displaystyle \lim _{x\to 0^{-}}x^{-n}=\lim _{x\to 0^{-}}{\frac {1}{x^{n}}}={\begin{cases}-\infty ,&{\text{if }}n{\text{ is odd}}\\+\infty ,&{\text{if }}n{\text{ is even}}\end{cases}}}
- {\displaystyle \lim _{x\to \infty }ax^{-1}=\lim _{x\to \infty }a/x=0{\text{ for any real }}a}
Exponential functions
[edit ]Functions of the form ag(x)
[edit ]- {\displaystyle \lim _{x\to c}e^{x}=e^{c}}, due to the continuity of {\displaystyle e^{x}}
- {\displaystyle \lim _{x\to \infty }a^{x}={\begin{cases}\infty ,&a>1\1,円&a=1\0,円&0<a<1\end{cases}}}
- {\displaystyle \lim _{x\to \infty }a^{-x}={\begin{cases}0,&a>1\1,円&a=1\\\infty ,&0<a<1\end{cases}}}[6]
- {\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{a}}=\lim _{x\to \infty }{a}^{1/x}={\begin{cases}1,&a>0\0,円&a=0\\{\text{does not exist}},&a<0\end{cases}}}
Functions of the form xg(x)
[edit ]- {\displaystyle \lim _{x\to \infty }{\sqrt[{x}]{x}}=\lim _{x\to \infty }{x}^{1/x}=1}
Functions of the form f(x)g(x)
[edit ]- {\displaystyle \lim _{x\to +\infty }\left({\frac {x}{x+k}}\right)^{x}=e^{-k}}[2]
- {\displaystyle \lim _{x\to 0}\left(1+x\right)^{\frac {1}{x}}=e}[2]
- {\displaystyle \lim _{x\to 0}\left(1+kx\right)^{\frac {m}{x}}=e^{mk}}
- {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {1}{x}}\right)^{x}=e}[7]
- {\displaystyle \lim _{x\to +\infty }\left(1-{\frac {1}{x}}\right)^{x}={\frac {1}{e}}}
- {\displaystyle \lim _{x\to +\infty }\left(1+{\frac {k}{x}}\right)^{mx}=e^{mk}}[6]
- {\displaystyle \lim _{x\to 0}\left(1+a\left({e^{-x}-1}\right)\right)^{-{\frac {1}{x}}}=e^{a}}. This limit can be derived from this limit.
Sums, products and composites
[edit ]- {\displaystyle \lim _{x\to 0}xe^{-x}=0}
- {\displaystyle \lim _{x\to \infty }xe^{-x}=0}
- {\displaystyle \lim _{x\to 0}\left({\frac {a^{x}-1}{x}}\right)=\ln {a},} for all positive a.[4] [7]
- {\displaystyle \lim _{x\to 0}\left({\frac {e^{x}-1}{x}}\right)=1}
- {\displaystyle \lim _{x\to 0}\left({\frac {e^{ax}-1}{x}}\right)=a}
Logarithmic functions
[edit ]Natural logarithms
[edit ]- {\displaystyle \lim _{x\to c}\ln {x}=\ln c}, due to the continuity of {\displaystyle \ln {x}}. In particular,
- {\displaystyle \lim _{x\to 0^{+}}\log x=-\infty }
- {\displaystyle \lim _{x\to \infty }\log x=\infty }
- {\displaystyle \lim _{x\to 1}{\frac {\ln(x)}{x-1}}=1}
- {\displaystyle \lim _{x\to 0}{\frac {\ln(x+1)}{x}}=1}[7]
- {\displaystyle \lim _{x\to 0}{\frac {-\ln \left(1+a\left({e^{-x}-1}\right)\right)}{x}}=a}. This limit follows from L'Hôpital's rule.
- {\displaystyle \lim _{x\to 0}x\ln x=0}, hence {\displaystyle \lim _{x\to 0}x^{x}=1}
- {\displaystyle \lim _{x\to \infty }{\frac {\ln x}{x}}=0}[6]
Logarithms to arbitrary bases
[edit ]For b > 1,
- {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-\infty }
- {\displaystyle \lim _{x\to \infty }\log _{b}x=\infty }
For b < 1,
- {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=\infty }
- {\displaystyle \lim _{x\to \infty }\log _{b}x=-\infty }
Both cases can be generalized to:
- {\displaystyle \lim _{x\to 0^{+}}\log _{b}x=-F(b)\infty }
- {\displaystyle \lim _{x\to \infty }\log _{b}x=F(b)\infty }
where {\displaystyle F(x)=2H(x-1)-1} and {\displaystyle H(x)} is the Heaviside step function
Trigonometric functions
[edit ]If {\displaystyle x} is expressed in radians:
- {\displaystyle \lim _{x\to a}\sin x=\sin a}
- {\displaystyle \lim _{x\to a}\cos x=\cos a}
These limits both follow from the continuity of sin and cos.
- {\displaystyle \lim _{x\to 0}{\frac {\sin x}{x}}=1}.[7] [8] Or, in general,
- {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{ax}}=1}, for a not equal to 0.
- {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{x}}=a}
- {\displaystyle \lim _{x\to 0}{\frac {\sin ax}{bx}}={\frac {a}{b}}}, for b not equal to 0.
- {\displaystyle \lim _{x\to \infty }x\sin \left({\frac {1}{x}}\right)=1}
- {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x}}=\lim _{x\to 0}{\frac {\cos x-1}{x}}=0}[4] [8] [9]
- {\displaystyle \lim _{x\to 0}{\frac {1-\cos x}{x^{2}}}={\frac {1}{2}}}
- {\displaystyle \lim _{x\to n^{\pm }}\tan \left(\pi x+{\frac {\pi }{2}}\right)=\mp \infty }, for integer n.
- {\displaystyle \lim _{x\to 0}{\frac {\tan x}{x}}=1}. Or, in general,
- {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{ax}}=1}, for a not equal to 0.
- {\displaystyle \lim _{x\to 0}{\frac {\tan ax}{bx}}={\frac {a}{b}}}, for b not equal to 0.
- {\displaystyle \lim _{n\to \infty }\ \underbrace {\sin \sin \cdots \sin(x_{0})} _{n}=0}, where x0 is an arbitrary real number.
- {\displaystyle \lim _{n\to \infty }\ \underbrace {\cos \cos \cdots \cos(x_{0})} _{n}=d}, where d is the Dottie number. x0 can be any arbitrary real number.
Sums
[edit ]In general, any infinite series is the limit of its partial sums. For example, an analytic function is the limit of its Taylor series, within its radius of convergence.
- {\displaystyle \lim _{n\to \infty }\sum _{k=1}^{n}{\frac {1}{k}}=\infty }. This is known as the harmonic series.[6]
- {\displaystyle \lim _{n\to \infty }\left(\sum _{k=1}^{n}{\frac {1}{k}}-\log n\right)=\gamma }. This is the Euler Mascheroni constant.
Notable special limits
[edit ]- {\displaystyle \lim _{n\to \infty }{\frac {n}{\sqrt[{n}]{n!}}}=e}
- {\displaystyle \lim _{n\to \infty }\left(n!\right)^{1/n}=\infty }. This can be proven by considering the inequality {\displaystyle e^{x}\geq {\frac {x^{n}}{n!}}} at {\displaystyle x=n}.
- {\displaystyle \lim _{n\to \infty },2円^{n}\underbrace {\sqrt {2-{\sqrt {2+{\sqrt {2+\dots +{\sqrt {2}}}}}}}} _{n}=\pi }. This can be derived from Viète's formula for π.
Limiting behavior
[edit ]Asymptotic equivalences
[edit ]Asymptotic equivalences, {\displaystyle f(x)\sim g(x)}, are true if {\displaystyle \lim _{x\to \infty }{\frac {f(x)}{g(x)}}=1}. Therefore, they can also be reframed as limits. Some notable asymptotic equivalences include
- {\displaystyle \lim _{x\to \infty }{\frac {x/\ln x}{\pi (x)}}=1}, due to the prime number theorem, {\displaystyle \pi (x)\sim {\frac {x}{\ln x}}}, where π(x) is the prime counting function.
- {\displaystyle \lim _{n\to \infty }{\frac {{\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}{n!}}=1}, due to Stirling's approximation, {\displaystyle n!\sim {\sqrt {2\pi n}}\left({\frac {n}{e}}\right)^{n}}.
Big O notation
[edit ]The behaviour of functions described by Big O notation can also be described by limits. For example
- {\displaystyle f(x)\in {\mathcal {O}}(g(x))} if {\displaystyle \limsup _{x\to \infty }{\frac {|f(x)|}{g(x)}}<\infty }
References
[edit ]- ^ a b c d e f g h i j "Basic Limit Laws". math.oregonstate.edu. Retrieved 2019年07月31日.
- ^ a b c d e f g h i j k l "Limits Cheat Sheet - Symbolab". www.symbolab.com. Retrieved 2019年07月31日.
- ^ a b c d e f g h "Section 2.3: Calculating Limits using the Limit Laws" (PDF).
- ^ a b c "Limits and Derivatives Formulas" (PDF).
- ^ a b c d e f "Limits Theorems". archives.math.utk.edu. Retrieved 2019年07月31日.
- ^ a b c d e "Some Special Limits". www.sosmath.com. Retrieved 2019年07月31日.
- ^ a b c d "SOME IMPORTANT LIMITS - Math Formulas - Mathematics Formulas - Basic Math Formulas". www.pioneermathematics.com. Retrieved 2019年07月31日.
- ^ a b "World Web Math: Useful Trig Limits". Massachusetts Institute of Technology . Retrieved 2023年03月20日.
- ^ "Calculus I - Proof of Trig Limits" . Retrieved 2023年03月20日.