Jump to content
Wikipedia The Free Encyclopedia

Radonifying function

From Wikipedia, the free encyclopedia
This article does not cite any sources . Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Radonifying function" – news · newspapers · books · scholar · JSTOR
(December 2009) (Learn how and when to remove this message)

In measure theory, a radonifying function (ultimately named after Johann Radon) between measurable spaces is one that takes a cylinder set measure (CSM) on the first space to a true measure on the second space. It acquired its name because the pushforward measure on the second space was historically thought of as a Radon measure.

Definition

[edit ]

Given two separable Banach spaces E {\displaystyle E} {\displaystyle E} and G {\displaystyle G} {\displaystyle G}, a CSM { μ T | T A ( E ) } {\displaystyle \{\mu _{T}|T\in {\mathcal {A}}(E)\}} {\displaystyle \{\mu _{T}|T\in {\mathcal {A}}(E)\}} on E {\displaystyle E} {\displaystyle E} and a continuous linear map θ L i n ( E ; G ) {\displaystyle \theta \in \mathrm {Lin} (E;G)} {\displaystyle \theta \in \mathrm {Lin} (E;G)}, we say that θ {\displaystyle \theta } {\displaystyle \theta } is radonifying if the push forward CSM (see below) { ( θ ( μ ) ) S | S A ( G ) } {\displaystyle \left\{\left.\left(\theta _{*}(\mu _{\cdot })\right)_{S}\right|S\in {\mathcal {A}}(G)\right\}} {\displaystyle \left\{\left.\left(\theta _{*}(\mu _{\cdot })\right)_{S}\right|S\in {\mathcal {A}}(G)\right\}} on G {\displaystyle G} {\displaystyle G} "is" a measure, i.e. there is a measure ν {\displaystyle \nu } {\displaystyle \nu } on G {\displaystyle G} {\displaystyle G} such that

( θ ( μ ) ) S = S ( ν ) {\displaystyle \left(\theta _{*}(\mu _{\cdot })\right)_{S}=S_{*}(\nu )} {\displaystyle \left(\theta _{*}(\mu _{\cdot })\right)_{S}=S_{*}(\nu )}

for each S A ( G ) {\displaystyle S\in {\mathcal {A}}(G)} {\displaystyle S\in {\mathcal {A}}(G)}, where S ( ν ) {\displaystyle S_{*}(\nu )} {\displaystyle S_{*}(\nu )} is the usual push forward of the measure ν {\displaystyle \nu } {\displaystyle \nu } by the linear map S : G F S {\displaystyle S:G\to F_{S}} {\displaystyle S:G\to F_{S}}.

Push forward of a CSM

[edit ]

Because the definition of a CSM on G {\displaystyle G} {\displaystyle G} requires that the maps in A ( G ) {\displaystyle {\mathcal {A}}(G)} {\displaystyle {\mathcal {A}}(G)} be surjective, the definition of the push forward for a CSM requires careful attention. The CSM

{ ( θ ( μ ) ) S | S A ( G ) } {\displaystyle \left\{\left.\left(\theta _{*}(\mu _{\cdot })\right)_{S}\right|S\in {\mathcal {A}}(G)\right\}} {\displaystyle \left\{\left.\left(\theta _{*}(\mu _{\cdot })\right)_{S}\right|S\in {\mathcal {A}}(G)\right\}}

is defined by

( θ ( μ ) ) S = μ S θ {\displaystyle \left(\theta _{*}(\mu _{\cdot })\right)_{S}=\mu _{S\circ \theta }} {\displaystyle \left(\theta _{*}(\mu _{\cdot })\right)_{S}=\mu _{S\circ \theta }}

if the composition S θ : E F S {\displaystyle S\circ \theta :E\to F_{S}} {\displaystyle S\circ \theta :E\to F_{S}} is surjective. If S θ {\displaystyle S\circ \theta } {\displaystyle S\circ \theta } is not surjective, let F ~ {\displaystyle {\tilde {F}}} {\displaystyle {\tilde {F}}} be the image of S θ {\displaystyle S\circ \theta } {\displaystyle S\circ \theta }, let i : F ~ F S {\displaystyle i:{\tilde {F}}\to F_{S}} {\displaystyle i:{\tilde {F}}\to F_{S}} be the inclusion map, and define

( θ ( μ ) ) S = i ( μ Σ ) {\displaystyle \left(\theta _{*}(\mu _{\cdot })\right)_{S}=i_{*}\left(\mu _{\Sigma }\right)} {\displaystyle \left(\theta _{*}(\mu _{\cdot })\right)_{S}=i_{*}\left(\mu _{\Sigma }\right)},

where Σ : E F ~ {\displaystyle \Sigma :E\to {\tilde {F}}} {\displaystyle \Sigma :E\to {\tilde {F}}} (so Σ A ( E ) {\displaystyle \Sigma \in {\mathcal {A}}(E)} {\displaystyle \Sigma \in {\mathcal {A}}(E)}) is such that i Σ = S θ {\displaystyle i\circ \Sigma =S\circ \theta } {\displaystyle i\circ \Sigma =S\circ \theta }.

See also

[edit ]

References

[edit ]


Basic concepts
Sets
Types of measures
Particular measures
Maps
Main results
Other results
For Lebesgue measure
Applications & related
Basic concepts
Derivatives
Measurability
Integrals
Results
Related
Functional calculus
Applications
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics

AltStyle によって変換されたページ (->オリジナル) /