Jump to content
Wikipedia The Free Encyclopedia

Convergence in measure

From Wikipedia, the free encyclopedia
Concepts in probability mathematics
Not to be confused with Convergence of measures.

Convergence in measure is either of two distinct mathematical concepts both of which generalize the concept of convergence in probability.

Definitions

[edit ]

Let f , f n   ( n N ) : X R {\displaystyle f,f_{n}\ (n\in \mathbb {N} ):X\to \mathbb {R} } {\displaystyle f,f_{n}\ (n\in \mathbb {N} ):X\to \mathbb {R} } be measurable functions on a measure space ( X , Σ , μ ) . {\displaystyle (X,\Sigma ,\mu ).} {\displaystyle (X,\Sigma ,\mu ).} The sequence f n {\displaystyle f_{n}} {\displaystyle f_{n}} is said to converge globally in measure to f {\displaystyle f} {\displaystyle f} if for every ε > 0 , {\displaystyle \varepsilon >0,} {\displaystyle \varepsilon >0,} lim n μ ( { x X : | f ( x ) f n ( x ) | ε } ) = 0 , {\displaystyle \lim _{n\to \infty }\mu (\{x\in X:|f(x)-f_{n}(x)|\geq \varepsilon \})=0,} {\displaystyle \lim _{n\to \infty }\mu (\{x\in X:|f(x)-f_{n}(x)|\geq \varepsilon \})=0,} and to converge locally in measure to f {\displaystyle f} {\displaystyle f} if for every ε > 0 {\displaystyle \varepsilon >0} {\displaystyle \varepsilon >0} and every F Σ {\displaystyle F\in \Sigma } {\displaystyle F\in \Sigma } with μ ( F ) < , {\displaystyle \mu (F)<\infty ,} {\displaystyle \mu (F)<\infty ,} lim n μ ( { x F : | f ( x ) f n ( x ) | ε } ) = 0. {\displaystyle \lim _{n\to \infty }\mu (\{x\in F:|f(x)-f_{n}(x)|\geq \varepsilon \})=0.} {\displaystyle \lim _{n\to \infty }\mu (\{x\in F:|f(x)-f_{n}(x)|\geq \varepsilon \})=0.}

On a finite measure space, both notions are equivalent. Otherwise, convergence in measure can refer to either global convergence in measure[1] : 2.2.3  or local convergence in measure, depending on the author.

Properties

[edit ]

Throughout, f {\displaystyle f} {\displaystyle f} and f n {\displaystyle f_{n}} {\displaystyle f_{n}} ( n N {\displaystyle n\in \mathbb {N} } {\displaystyle n\in \mathbb {N} }) are measurable functions X R {\displaystyle X\to \mathbb {R} } {\displaystyle X\to \mathbb {R} }.

  • Global convergence in measure implies local convergence in measure. The converse, however, is false; i.e., local convergence in measure is strictly weaker than global convergence in measure, in general.
  • If, however, μ ( X ) < {\displaystyle \mu (X)<\infty } {\displaystyle \mu (X)<\infty } or, more generally, if f {\displaystyle f} {\displaystyle f} and all the f n {\displaystyle f_{n}} {\displaystyle f_{n}} vanish outside some set of finite measure, then the distinction between local and global convergence in measure disappears.
  • If μ {\displaystyle \mu } {\displaystyle \mu } is σ-finite and (fn) converges (locally or globally) to f {\displaystyle f} {\displaystyle f} in measure, there is a subsequence converging to f {\displaystyle f} {\displaystyle f} almost everywhere.[1] : 2.2.5  The assumption of σ-finiteness is not necessary in the case of global convergence in measure.
  • If μ {\displaystyle \mu } {\displaystyle \mu } is σ {\displaystyle \sigma } {\displaystyle \sigma }-finite, ( f n ) {\displaystyle (f_{n})} {\displaystyle (f_{n})} converges to f {\displaystyle f} {\displaystyle f} locally in measure if and only if every subsequence has in turn a subsequence that converges to f {\displaystyle f} {\displaystyle f} almost everywhere.
  • In particular, if ( f n ) {\displaystyle (f_{n})} {\displaystyle (f_{n})} converges to f {\displaystyle f} {\displaystyle f} almost everywhere, then ( f n ) {\displaystyle (f_{n})} {\displaystyle (f_{n})} converges to f {\displaystyle f} {\displaystyle f} locally in measure. The converse is false.
  • Fatou's lemma and the monotone convergence theorem hold if almost everywhere convergence is replaced by (local or global) convergence in measure.
  • If μ {\displaystyle \mu } {\displaystyle \mu } is σ {\displaystyle \sigma } {\displaystyle \sigma }-finite, Lebesgue's dominated convergence theorem also holds if almost everywhere convergence is replaced by (local or global) convergence in measure.[1] : 2.8.6 
  • If X = [ a , b ] R {\displaystyle X=[a,b]\subseteq \mathbb {R} } {\displaystyle X=[a,b]\subseteq \mathbb {R} } and μ is Lebesgue measure, there are sequences ( g n ) {\displaystyle (g_{n})} {\displaystyle (g_{n})} of step functions and ( h n ) {\displaystyle (h_{n})} {\displaystyle (h_{n})} of continuous functions converging globally in measure to f {\displaystyle f} {\displaystyle f}.
  • If f {\displaystyle f} {\displaystyle f} and f n {\displaystyle f_{n}} {\displaystyle f_{n}} are in Lp(μ) for some p > 0 {\displaystyle p>0} {\displaystyle p>0} and ( f n ) {\displaystyle (f_{n})} {\displaystyle (f_{n})} converges to f {\displaystyle f} {\displaystyle f} in the p {\displaystyle p} {\displaystyle p}-norm, then ( f n ) {\displaystyle (f_{n})} {\displaystyle (f_{n})} converges to f {\displaystyle f} {\displaystyle f} globally in measure. The converse is false.
  • If f n {\displaystyle f_{n}} {\displaystyle f_{n}} converges to f {\displaystyle f} {\displaystyle f} in measure and g n {\displaystyle g_{n}} {\displaystyle g_{n}} converges to g {\displaystyle g} {\displaystyle g} in measure then f n + g n {\displaystyle f_{n}+g_{n}} {\displaystyle f_{n}+g_{n}} converges to f + g {\displaystyle f+g} {\displaystyle f+g} in measure. Additionally, if the measure space is finite, f n g n {\displaystyle f_{n}g_{n}} {\displaystyle f_{n}g_{n}} also converges to f g {\displaystyle fg} {\displaystyle fg}.

Counterexamples

[edit ]

Let X = R {\displaystyle X=\mathbb {R} } {\displaystyle X=\mathbb {R} }, μ {\displaystyle \mu } {\displaystyle \mu } be Lebesgue measure, and f {\displaystyle f} {\displaystyle f} the constant function with value zero.

  • The sequence f n = χ [ n , ) {\displaystyle f_{n}=\chi _{[n,\infty )}} {\displaystyle f_{n}=\chi _{[n,\infty )}} converges to f {\displaystyle f} {\displaystyle f} locally in measure, but does not converge to f {\displaystyle f} {\displaystyle f} globally in measure.
  • The sequence
f n = χ [ j 2 k , j + 1 2 k ] , {\displaystyle f_{n}=\chi _{\left[{\frac {j}{2^{k}}},{\frac {j+1}{2^{k}}}\right]},} {\displaystyle f_{n}=\chi _{\left[{\frac {j}{2^{k}}},{\frac {j+1}{2^{k}}}\right]},}
where k = log 2 n {\displaystyle k=\lfloor \log _{2}n\rfloor } {\displaystyle k=\lfloor \log _{2}n\rfloor } and j = n 2 k {\displaystyle j=n-2^{k}} {\displaystyle j=n-2^{k}}, the first five terms of which are
χ [ 0 , 1 ] , χ [ 0 , 1 2 ] , χ [ 1 2 , 1 ] , χ [ 0 , 1 4 ] , χ [ 1 4 , 1 2 ] , {\displaystyle \chi _{\left[0,1\right]},\;\chi _{\left[0,{\frac {1}{2}}\right]},\;\chi _{\left[{\frac {1}{2}},1\right]},\;\chi _{\left[0,{\frac {1}{4}}\right]},\;\chi _{\left[{\frac {1}{4}},{\frac {1}{2}}\right]},} {\displaystyle \chi _{\left[0,1\right]},\;\chi _{\left[0,{\frac {1}{2}}\right]},\;\chi _{\left[{\frac {1}{2}},1\right]},\;\chi _{\left[0,{\frac {1}{4}}\right]},\;\chi _{\left[{\frac {1}{4}},{\frac {1}{2}}\right]},}
converges to 0 {\displaystyle 0} {\displaystyle 0} globally in measure; but for no x {\displaystyle x} {\displaystyle x} does f n ( x ) {\displaystyle f_{n}(x)} {\displaystyle f_{n}(x)} converge to zero. Hence ( f n ) {\displaystyle (f_{n})} {\displaystyle (f_{n})} fails to converge to f {\displaystyle f} {\displaystyle f} almost everywhere.[1] : 2.2.4 
  • The sequence
f n = n χ [ 0 , 1 n ] {\displaystyle f_{n}=n\chi _{\left[0,{\frac {1}{n}}\right]}} {\displaystyle f_{n}=n\chi _{\left[0,{\frac {1}{n}}\right]}}
converges to f {\displaystyle f} {\displaystyle f} almost everywhere and globally in measure, but not in the p {\displaystyle p} {\displaystyle p}-norm for any p 1 {\displaystyle p\geq 1} {\displaystyle p\geq 1}.

Topology

[edit ]

There is a topology, called the topology of (local) convergence in measure, on the collection of measurable functions from X such that local convergence in measure corresponds to convergence on that topology. This topology is defined by the family of pseudometrics { ρ F : F Σ ,   μ ( F ) < } , {\displaystyle \{\rho _{F}:F\in \Sigma ,\ \mu (F)<\infty \},} {\displaystyle \{\rho _{F}:F\in \Sigma ,\ \mu (F)<\infty \},} where ρ F ( f , g ) = F min { | f g | , 1 } d μ . {\displaystyle \rho _{F}(f,g)=\int _{F}\min\{|f-g|,1\},円d\mu .} {\displaystyle \rho _{F}(f,g)=\int _{F}\min\{|f-g|,1\},円d\mu .} In general, one may restrict oneself to some subfamily of sets F (instead of all possible subsets of finite measure). It suffices that for each G X {\displaystyle G\subset X} {\displaystyle G\subset X} of finite measure and ε > 0 {\displaystyle \varepsilon >0} {\displaystyle \varepsilon >0} there exists F in the family such that μ ( G F ) < ε . {\displaystyle \mu (G\setminus F)<\varepsilon .} {\displaystyle \mu (G\setminus F)<\varepsilon .} When μ ( X ) < {\displaystyle \mu (X)<\infty } {\displaystyle \mu (X)<\infty }, we may consider only one metric ρ X {\displaystyle \rho _{X}} {\displaystyle \rho _{X}}, so the topology of convergence in finite measure is metrizable. If μ {\displaystyle \mu } {\displaystyle \mu } is an arbitrary measure finite or not, then d ( f , g ) := inf δ > 0 μ ( { | f g | δ } ) + δ {\displaystyle d(f,g):=\inf \limits _{\delta >0}\mu (\{|f-g|\geq \delta \})+\delta } {\displaystyle d(f,g):=\inf \limits _{\delta >0}\mu (\{|f-g|\geq \delta \})+\delta } still defines a metric that generates the global convergence in measure.[2]

Because this topology is generated by a family of pseudometrics, it is uniformizable. Working with uniform structures instead of topologies allows us to formulate uniform properties such as Cauchyness.

See also

[edit ]

References

[edit ]
  1. ^ a b c d Bogachev, Vladimir Igorevich (2007). Measure theory. Berlin New York: Springer. ISBN 978-3-540-34514-5.
  2. ^ Vladimir I. Bogachev, Measure Theory Vol. I, Springer Science & Business Media, 2007
  • D.H. Fremlin, 2000. Measure Theory . Torres Fremlin.
  • H.L. Royden, 1988. Real Analysis. Prentice Hall.
  • G. B. Folland 1999, Section 2.4. Real Analysis. John Wiley & Sons.
Basic concepts
Sets
Types of measures
Particular measures
Maps
Main results
Other results
For Lebesgue measure
Applications & related
Basic concepts
L1 spaces
L2 spaces
L {\displaystyle L^{\infty }} {\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
For Lebesgue measure
Applications & related

AltStyle によって変換されたページ (->オリジナル) /