Jump to content
Wikipedia The Free Encyclopedia

Operator space

From Wikipedia, the free encyclopedia

In functional analysis, a discipline within mathematics, an operator space is a normed vector space (not necessarily a Banach space)[1] "given together with an isometric embedding into the space B(H) of all bounded operators on a Hilbert space H.".[2] [3] The appropriate morphisms between operator spaces are completely bounded maps.

Equivalent formulations

[edit ]

Equivalently, an operator space is a subspace of a C*-algebra.

Category of operator spaces

[edit ]

The category of operator spaces includes operator systems and operator algebras. For operator systems, in addition to an induced matrix norm of an operator space, one also has an induced matrix order. For operator algebras, there is still the additional ring structure.

See also

[edit ]

References

[edit ]
  1. ^ Paulsen, Vern (2002). Completely Bounded Maps and Operator Algebras. Cambridge University Press. p. 26. ISBN 978-0-521-81669-4 . Retrieved 2022年03月08日.
  2. ^ Pisier, Gilles (2003). Introduction to Operator Space Theory. Cambridge University Press. p. 1. ISBN 978-0-521-81165-1 . Retrieved 2008年12月18日.
  3. ^ Blecher, David P.; Christian Le Merdy (2004). Operator Algebras and Their Modules: An Operator Space Approach. Oxford University Press. First page of Preface. ISBN 978-0-19-852659-9 . Retrieved 2008年12月18日.
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Main results
Special Elements/Operators
Spectrum
Decomposition
Spectral Theorem
Special algebras
Finite-Dimensional
Generalizations
Miscellaneous
Examples
Applications

AltStyle によって変換されたページ (->オリジナル) /