Normal element
In mathematics, an element of a *-algebra is called normal if it commutates with its adjoint.[1]
Definition
[edit ]Let {\displaystyle {\mathcal {A}}} be a *-Algebra. An element {\displaystyle a\in {\mathcal {A}}} is called normal if it commutes with {\displaystyle a^{*}}, i.e. it satisfies the equation {\displaystyle aa^{*}=a^{*}a}.[1]
The set of normal elements is denoted by {\displaystyle {\mathcal {A}}_{N}} or {\displaystyle N({\mathcal {A}})}.
A special case of particular importance is the case where {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ({\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}}), which is called a C*-algebra.
Examples
[edit ]- Every self-adjoint element of a a *-algebra is normal.[1]
- Every unitary element of a a *-algebra is normal.[2]
- If {\displaystyle {\mathcal {A}}} is a C*-Algebra and {\displaystyle a\in {\mathcal {A}}_{N}} a normal element, then for every continuous function {\displaystyle f} on the spectrum of {\displaystyle a} the continuous functional calculus defines another normal element {\displaystyle f(a)}.[3]
Criteria
[edit ]Let {\displaystyle {\mathcal {A}}} be a *-algebra. Then:
- An element {\displaystyle a\in {\mathcal {A}}} is normal if and only if the *-subalgebra generated by {\displaystyle a}, meaning the smallest *-algebra containing {\displaystyle a}, is commutative.[2]
- Every element {\displaystyle a\in {\mathcal {A}}} can be uniquely decomposed into a real and imaginary part, which means there exist self-adjoint elements {\displaystyle a_{1},a_{2}\in {\mathcal {A}}_{sa}}, such that {\displaystyle a=a_{1}+\mathrm {i} a_{2}}, where {\displaystyle \mathrm {i} } denotes the imaginary unit. Exactly then {\displaystyle a} is normal if {\displaystyle a_{1}a_{2}=a_{2}a_{1}}, i.e. real and imaginary part commutate.[1]
Properties
[edit ]In *-algebras
[edit ]Let {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a *-algebra {\displaystyle {\mathcal {A}}}. Then:
- The adjoint element {\displaystyle a^{*}} is also normal, since {\displaystyle a=(a^{*})^{*}} holds for the involution *.[4]
In C*-algebras
[edit ]Let {\displaystyle a\in {\mathcal {A}}_{N}} be a normal element of a C*-algebra {\displaystyle {\mathcal {A}}}. Then:
- It is {\displaystyle \left\|a^{2}\right\|=\left\|a\right\|^{2}}, since for normal elements using the C*-identity {\displaystyle \left\|a^{2}\right\|^{2}=\left\|(a^{2})(a^{2})^{*}\right\|=\left\|(a^{*}a)^{*}(a^{*}a)\right\|=\left\|a^{*}a\right\|^{2}=\left(\left\|a\right\|^{2}\right)^{2}} holds.[5]
- Every normal element is a normaloid element, i.e. the spectral radius {\displaystyle r(a)} equals the norm of {\displaystyle a}, i.e. {\displaystyle r(a)=\left\|a\right\|}.[6] This follows from the spectral radius formula by repeated application of the previous property.[7]
- A continuous functional calculus can be developed which – put simply – allows the application of continuous functions on the spectrum of {\displaystyle a} to {\displaystyle a}.[3]
See also
[edit ]Notes
[edit ]- ^ a b c d Dixmier 1977, p. 4.
- ^ a b Dixmier 1977, p. 5.
- ^ a b Dixmier 1977, p. 13.
- ^ Dixmier 1977, pp. 3–4.
- ^ Werner 2018, p. 518.
- ^ Heuser 1982, p. 390.
- ^ Werner 2018, pp. 284–285, 518.
References
[edit ]- Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
- Heuser, Harro (1982). Functional analysis. Translated by Horvath, John. John Wiley & Sons Ltd. ISBN 0-471-10069-2.
- Werner, Dirk (2018). Funktionalanalysis (in German) (8 ed.). Springer. ISBN 978-3-662-55407-4.