List of quantum processors
Find sources: "List of quantum processors" – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to remove this message)
This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.
Quantum processors are difficult to compare due to the different architectures and approaches. Due to this, published physical qubit numbers do not reflect the performance levels of the processor. This is instead achieved through the number of logical qubits or benchmarking metrics such as quantum volume, randomized benchmarking or circuit layer operations per second (CLOPS).[1]
Circuit-based quantum processors
[edit ]These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.
| Manufacturer | Name/codename
designation |
Architecture | Layout | Fidelity (%) | Qubits (physical) | Release date | Quantum volume |
|---|---|---|---|---|---|---|---|
| Alpine Quantum Technologies | PINE System[2] | Trapped ion | 24[3] | June 7, 2021 | 128[4] | ||
| Atom Computing | Phoenix | Neutral atoms in optical lattices | 100[5] | August 10, 2021 | |||
| Atom Computing | — | Neutral atoms in optical lattices | ×ばつ35 lattice (with 45 vacancies) | < 99.5 (2 qubits)[6] | 1180[7] [8] | October 2023 | |
| CAS | Xiaohong[9] | Superconducting | — | — | 504[9] | 2024 | |
| — | Superconducting | — | 99.5[10] | 20 | 2017 | ||
| — | Superconducting | ×ばつ7 lattice | 99.7[10] | 49[11] | Q4 2017 (planned) | ||
| Bristlecone | Superconducting transmon | ×ばつ12 lattice | 99 (readout) 99.9 (1 qubit) 99.4 (2 qubits) |
72[12] [13] | March 5, 2018 | ||
| Sycamore | Superconducting transmon | ×ばつ6 lattice | — | 53 effective (54 total) | 2019 | ||
| Willow | Superconducting transmon | rotated rectangular lattice (see spec sheet) | 99.965% (1-qubit) 99.67% (2-qubit) Surface code error correction implemented. |
105 qubits | December 9, 2024[14] | ||
| IBM | IBM Q 5 Tenerife | Superconducting | bow tie | 99.897 (average gate) 98.64 (readout) |
5 | 2016[10] | |
| IBM | IBM Q 5 Yorktown | Superconducting | bow tie | 99.545 (average gate) 94.2 (readout) |
5 | ||
| IBM | IBM Q 14 Melbourne | Superconducting | — | 99.735 (average gate) 97.13 (readout) |
14 | ||
| IBM | IBM Q 16 Rüschlikon | Superconducting | ×ばつ8 lattice | 99.779 (average gate) 94.24 (readout) |
16[15] | May 17, 2017 (Retired: 26 September 2018)[16] |
|
| IBM | IBM Q 17 | Superconducting | — | — | 17[15] | May 17, 2017 | |
| IBM | IBM Q 20 Tokyo | Superconducting | ×ばつ4 lattice | 99.812 (average gate) 93.21 (readout) |
20[17] | November 10, 2017 | |
| IBM | IBM Q 20 Austin | Superconducting | ×ばつ4 lattice | — | 20 | (Retired: 4 July 2018)[16] | |
| IBM | IBM Q 50 prototype | Superconducting transmon | — | — | 50[17] | ||
| IBM | IBM Q 53 | Superconducting | — | — | 53 | October 2019 | |
| IBM | IBM Eagle | Superconducting transmon | — | — | 127[18] | November 2021 | |
| IBM | IBM Osprey [7] [8] | Superconducting | — | — | 433[18] | November 2022 | |
| IBM | IBM Condor [19] [7] | Superconducting | Honeycomb[20] | — | 1121[18] | December 2023 | |
| IBM | IBM Heron [19] [7] | Superconducting | — | — | 133 | December 2023 | |
| IBM | IBM Heron R2[21] | Superconducting | Heavy hex | 96.5 (2 qubits) | 156 | November 2024 | |
| IBM | IBM Armonk[22] | Superconducting | Single Qubit | — | 1 | October 16, 2019 | |
| IBM | IBM Ourense[22] | Superconducting | T | — | 5 | July 3, 2019 | |
| IBM | IBM Vigo[22] | Superconducting | T | — | 5 | July 3, 2019 | |
| IBM | IBM London[22] | Superconducting | T | — | 5 | September 13, 2019 | |
| IBM | IBM Burlington[22] | Superconducting | T | — | 5 | September 13, 2019 | |
| IBM | IBM Essex[22] | Superconducting | T | — | 5 | September 13, 2019 | |
| IBM | IBM Athens[23] | Superconducting | — | 5 | 32[24] | ||
| IBM | IBM Belem[23] | Superconducting | Falcon r4T[25] | — | 5 | 16[25] | |
| IBM | IBM Bogotá[23] | Superconducting | Falcon r4L[25] | — | 5 | 32[25] | |
| IBM | IBM Casablanca[23] | Superconducting | Falcon r4H[25] | — | 7 | (Retired – March 2022) | 32[25] |
| IBM | IBM Dublin[23] | Superconducting | — | 27 | 64 | ||
| IBM | IBM Guadalupe[23] | Superconducting | Falcon r4P[25] | — | 16 | 32[25] | |
| IBM | IBM Kolkata | Superconducting | — | 27 | 128 | ||
| IBM | IBM Lima[23] | Superconducting | Falcon r4T[25] | — | 5 | 8[25] | |
| IBM | IBM Manhattan[23] | Superconducting | — | 65 | 32[24] | ||
| IBM | IBM Montreal[23] | Superconducting | Falcon r4[25] | — | 27 | 128[25] | |
| IBM | IBM Mumbai[23] | Superconducting | Falcon r5.1[25] | — | 27 | 128[25] | |
| IBM | IBM Paris[23] | Superconducting | — | 27 | 32[24] | ||
| IBM | IBM Quito[23] | Superconducting | Falcon r4T[25] | — | 5 | 16[25] | |
| IBM | IBM Rome[23] | Superconducting | — | 5 | 32[24] | ||
| IBM | IBM Santiago[23] | Superconducting | — | 5 | 32[24] | ||
| IBM | IBM Sydney[23] | Superconducting | Falcon r4[25] | — | 27 | 32[25] | |
| IBM | IBM Toronto[23] | Superconducting | Falcon r4[25] | — | 27 | 32[25] | |
| Intel | 17-Qubit Superconducting Test Chip | Superconducting | 40-pin cross gap | — | 17[26] [27] | October 10, 2017 | |
| Intel | Tangle Lake | Superconducting | 108-pin cross gap | — | 49[28] | January 9, 2018 | |
| Intel | Tunnel Falls | Semiconductor spin qubits | 12[29] | June 15, 2023 | |||
| IonQ | Harmony | Trapped ion | All-to-All[25] | 99.73 (1 qubit)
90.02 (2 qubit) 99.30 (SPAM) |
11[30] | 2022 | 8[25] |
| IonQ | Aria | Trapped ion | All-to-All[25] | 99.97 (1 qubit)
98.33 (2 qubit) 98.94 (SPAM) |
25[30] | 2022 | |
| IonQ | Forte | Trapped ion | 366x1 chain[31] All-to-All[25] | 99.98 (1 qubit) 98.5–99.3 (2 qubit)[31] 99.56 ((SPAM) |
36[30] (earlier 32) | 2022 | |
| IQM | - | Superconducting | Star | 99.91 (1 qubit) 99.14 (2 qubits) |
5[32] | November 30, 2021[33] | — |
| IQM | - | Superconducting | Square lattice | 99.91 (1 qubit median) 99.944 (1 qubit max) 98.25 (2 qubits median) 99.1 (2 qubits max) |
20 | October 9, 2023[34] | 16[35] |
| M Squared Lasers | Maxwell | Neutral atoms in optical lattices | 99.5 (3-qubit gate), 99.1 (4-qubit gate)[36] | 200[37] | November 2022 | ||
| Oxford Quantum Circuits | Lucy[38] | Superconducting | 8 | 2022 | |||
| Oxford Quantum Circuits | OQC Toshiko[39] | Superconducting (Coaxmon) | 32 | 2023 | |||
| Quandela | Ascella | Photonics | — | 99.6 (1 qubit) 93.8 (2 qubits) 86.0 (3 qubits) |
6[40] | 2022[41] | |
| QuTech at TU Delft | Spin-2 | Semiconductor spin qubits | 99 (average gate) 85 (readout)[42] |
2 | 2020 | ||
| QuTech at TU Delft | - | Semiconductor spin qubits | 6[43] | September 2022 | |||
| QuTech at TU Delft | Starmon-5 | Superconducting | X configuration | 97 (readout)[44] | 5 | 2020 | |
| Quantinuum | H2[45] | Trapped ion | Racetrack, All-to-All | 99.997 (1 qubit) 99.87 (2 qubit) |
56[46] (earlier 32) | May 9, 2023 | 8,388,608[47] |
| Quantinuum | H1-1[48] | Trapped ion | ×ばつ15 (Circuit Size) | 99.996 (1 qubit) 99.914 (2 qubit) |
20 | 2022 | 1,048,576[49] |
| Quantinuum | H1-2 [48] | Trapped ion | All-to-All[25] | 99.996 (1 qubit) 99.7 (2 qubit) |
12 | 2022 | 4096[50] |
| Quantware | Soprano[51] | Superconducting | 99.9 (single-qubit gates) | 5 | July 2021 | ||
| Quantware | Contralto[52] | Superconducting | 99.9 (single-qubit gates) | 25 | March 7, 2022[53] | ||
| Quantware | Tenor[54] | Superconducting | 64 | February 23, 2023 | |||
| Rigetti | Agave | Superconducting | — | 96 (Single-qubit gates)
87 (Two-qubit gates) |
8 | June 4, 2018[55] | |
| Rigetti | Acorn | Superconducting transmon | — | 98.63 (Single-qubit gates)
87.5 (Two-qubit gates) |
19[56] | December 17, 2017 | |
| Rigetti | Aspen-1 | Superconducting | — | 93.23 (Single-qubit gates)
90.84 (Two-qubit gates) |
16 | November 30, 2018[55] | |
| Rigetti | Aspen-4 | Superconducting | 99.88 (Single-qubit gates)
94.42 (Two-qubit gates) |
13 | March 10, 2019 | ||
| Rigetti | Aspen-7 | Superconducting | 99.23 (Single-qubit gates)
95.2 (Two-qubit gates) |
28 | November 15, 2019 | ||
| Rigetti | Aspen-8 | Superconducting | 99.22 (Single-qubit gates)
94.34 (Two-qubit gates) |
31 | May 5, 2020 | ||
| Rigetti | Aspen-9 | Superconducting | 99.39 (Single-qubit gates)
94.28 (Two-qubit gates) |
32 | February 6, 2021 | ||
| Rigetti | Aspen-10 | Superconducting | 99.37 (Single-qubit gates)
94.66 (Two-qubit gates) |
32 | November 4, 2021 | ||
| Rigetti | Aspen-11 | Superconducting | Octagonal[25] | 99.8 (Single-qubit gates) 92.7 (Two-qubit gates CZ) 91.0 (Two-qubit gates XY) | 40 | December 15, 2021 | |
| Rigetti | Aspen-M-1 | Superconducting transmon | Octagonal[25] | 99.8 (Single-qubit gates) 93.7 (Two-qubit gates CZ) 94.6 (Two-qubit gates XY) | 80 | February 15, 2022 | 8[25] |
| Rigetti | Aspen-M-2 | Superconducting transmon | 99.8 (Single-qubit gates) 91.3 (Two-qubit gates CZ) 90.0 (Two-qubit gates XY) | 80 | August 1, 2022 | ||
| Rigetti | Aspen-M-3 | Superconducting transmon | — | 99.9 (Single-qubit gates) 94.7 (Two-qubit gates CZ) 95.1 (Two-qubit gates XY) | 80[57] | December 2, 2022 | |
| Rigetti | Ankaa-2 | Superconducting transmon | — | 98 (Two-qubit gates) | 84[58] | December 20, 2023 | |
| RIKEN | RIKEN[59] | Superconducting | — | — | 53 effective (64 total)[60] [61] | March 27, 2023 | — |
| SaxonQ | Princess | Nitrogen-vacancy center | 4[62] | June 26, 2024 | |||
| SaxonQ | Princess+ | Nitrogen-vacancy center | 4[63] | June 12, 2025 | |||
| SpinQ | Triangulum | Nuclear magnetic resonance | 3[64] | September 2021 | |||
| USTC | Jiuzhang | Photonics | — | — | 76[65] [66] | 2020 | |
| USTC | Zuchongzhi | Superconducting | — | — | 62[67] | 2020 | |
| USTC | Zuchongzhi 2.1 | Superconducting | lattice[68] | 99.86 (Single-qubit gates) 99.41 (Two-qubit gates) 95.48 (Readout) | 66[69] | 2021 | |
| USTC | Zuchongzhi 3.0[70] | Superconducting transmon | 15 x 7 | 99.90 (Single-qubit gates) 99.62 (Two-qubit gates) 99.18 (Readout) | 105 | December 16, 2024 | |
| Xanadu | Borealis[71] | Photonics (Continuous-variable) | — | — | 216[71] | 2022[71] | |
| Xanadu | X8 [72] | Photonics (Continuous-variable) | — | — | 8 | 2020 | |
| Xanadu | X12 | Photonics (Continuous-variable) | — | — | 12 | 2020[72] | |
| Xanadu | X24 | Photonics (Continuous-variable) | — | — | 24 | 2020[72] |
Annealing quantum processors
[edit ]These QPUs are based on quantum annealing, not to be confused with digital annealing.[73]
| Manufacturer | Name/Codename
/Designation |
Architecture | Layout | Fidelity (%) | Qubits | Release date |
|---|---|---|---|---|---|---|
| D-Wave | D-Wave One (Rainier) | Superconducting | C4 = Chimera(4,4,4)[74] = ×ばつ4 K4,4 | — | 128 | May 11, 2011 |
| D-Wave | D-Wave Two | Superconducting | C8 = Chimera(8,8,4)[74] = ×ばつ8 K4,4 | — | 512 | 2013 |
| D-Wave | D-Wave 2X | Superconducting | C12 = Chimera(12,12,4)[74] = ×ばつ12 K4,4 | — | 1152 | 2015 |
| D-Wave | D-Wave 2000Q | Superconducting | C16 = Chimera(16,16,4)[74] = ×ばつ16 K4,4 | — | 2000[75] | 2017 |
| D-Wave | D-Wave Advantage | Superconducting | Pegasus P16[76] | — | 5000[77] [75] | 2020 |
| D-Wave | D-Wave Advantage 2 [78] [79] [80] [81] [82] | Superconducting[78] [79] | Zephyr Z15[81] [83] | — | 4400[82] [84] | 2025[78] [79] [80] [81] [83] |
Analog quantum processors
[edit ]These QPUs are based on analog Hamiltonian simulation.
| Manufacturer | Name/Codename/Designation | Architecture | Layout | Fidelity (%) | Qubits | Release date |
|---|---|---|---|---|---|---|
| QuEra | Aquila | Neutral atoms | — | — | 256[85] | November 2022 |
See also
[edit ]References
[edit ]- ^ Wack, Andrew; Paik, Hanhee; Javadi-Abhari, Ali; Jurcevic, Petar; Faro, Ismael; Gambetta, Jay M.; Johnson, Blake R. (29 Oct 2021). "A practical heuristic for finding graph minors". arXiv:2110.14108 [quant-ph].
- ^ "THE SYSTEM IS THE FIRST COMMERCIAL 19-INCH RACK-MOUNTED ROOM-TEMPERATURE QUANTUM COMPUTER". AQT. Retrieved 21 Feb 2023.
- ^ Pogorelov, I.; Feldker, T.; Et, al. (2021年06月07日). "Compact Ion-Trap Quantum Computing Demonstrator". PRX Quantum. 2 (2) 020343. arXiv:2101.11390 . Bibcode:2021PRXQ....2b0343P. doi:10.1103/PRXQuantum.2.020343. S2CID 231719119.
- ^ "STATE OF QUANTUM COMPUTING IN EUROPE: AQT PUSHING PERFORMANCE WITH A QUANTUM VOLUME OF 128". AQT. 8 February 2023. Retrieved 24 Feb 2023.
- ^ Barnes, Katrina; Battaglino, Peter; Et, al. (2022). "Assembly and coherent control of a register of nuclear spin qubits". Nature Communications. 13 (1): 2779. arXiv:2108.04790 . Bibcode:2022NatCo..13.2779B. doi:10.1038/s41467-022-29977-z. PMC 9120523 . PMID 35589685. S2CID 236965948.
- ^ Atom Computing Previews an 1180 Qubit Neutral Atom Processor, Quantum Computing Report
- ^ a b c d Padavic-Callaghan, Karmela (December 9, 2023). "IBM unveils 1000-qubit computer". New Scientist. p. 13.
- ^ a b Wilkins, Alex (October 24, 2023). "Record-breaking quantum computer has more than 1000 qubits". New Scientist. Retrieved 2024年01月01日.
- ^ a b "China launches 504-qubit quantum chip, open to global users". www.chinadaily.com.cn/.
- ^ a b c Lant, Karla (2017年06月23日). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. Retrieved 2017年10月18日.
- ^ Simonite, Tom (2017年04月21日). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review . Retrieved 2017年10月18日.
- ^ "A Preview of Bristlecone, Google's New Quantum Processor", Research (World wide web log), Google, March 2018.
- ^ Greene, Tristan (2018年03月06日). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web . Retrieved 2018年06月27日.
- ^ Neven, Hartmut (9 December 2024). "Meet Willow, our state-of-the-art quantum chip". Google. Retrieved 10 December 2024.
- ^ a b "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017年05月17日. Archived from the original on May 22, 2017. Retrieved 2017年10月18日.
- ^ a b "Quantum devices & simulators". IBM Q. 2018年06月05日. Retrieved 2019年03月29日.
- ^ a b "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. Archived from the original on November 10, 2017. Retrieved 10 November 2017.
- ^ a b c Brooks, Michael (January–February 2024). "Bring on the noise". MIT Technology Review. Vol. 127, no. 1. Cambridge, Massachusetts. p. 50.
- ^ a b "IBM's 'Condor' quantum computer has more than 1000 qubits". New Scientist. Retrieved 2023年12月21日.
- ^ AbuGhanem, M. (2025). "IBM quantum computers: Evolution, performance, and future directions". The Journal of Supercomputing. 81 (5) 687. arXiv:2410.00916 . doi:10.1007/s11227-025-07047-7.
- ^ "IBM Quantum delivers on 2022 100x100 performance challenge | IBM Quantum Computing Blog". www.ibm.com. Retrieved 2024年11月25日.
- ^ a b c d e f "IBM Q Experience". IBM Q Experience. Retrieved 2020年01月04日.
- ^ a b c d e f g h i j k l m n o p "IBM Quantum". IBM Quantum. Retrieved 2023年06月18日.
- ^ a b c d e "IBM Blog". IBM Blog. Retrieved 2023年06月18日.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab Pelofske, Elijah; Bärtschi, Andreas; Eidenbenz, Stephan (2022). "Quantum Volume in Practice: What Users Can Expect from NISQ Devices". IEEE Transactions on Quantum Engineering. 3: 1–19. arXiv:2203.03816 . Bibcode:2022ITQE....3E4764P. doi:10.1109/TQE.2022.3184764. ISSN 2689-1808. S2CID 247315182.
- ^ "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". Intel Newsroom. 2017年10月10日. Retrieved 2017年10月18日.
- ^ Novet, Jordan (2017年10月10日). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC . Retrieved 2017年10月18日.
- ^ "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018年01月09日. Retrieved 2018年01月14日.
- ^ "Intel's New Chip to Advance Silicon Spin Qubit Research for Quantum Computing". Intel Newsroom. 15 June 2023. Retrieved 2023年07月09日.
- ^ a b c "IonQ | Trapped Ion Quantum Computing". IonQ. Retrieved 2023年05月02日.
- ^ a b Egan, Laird; Debroy, Dripto M.; Noel, Crystal; Risinger, Andrew; Zhu, Daiwei; Biswas, Debopriyo; Newman, Michael; Li, Muyuan; Brown, Kenneth R.; Cetina, Marko; Monroe, Christopher (2020). "Fault-Tolerant Operation of a Quantum Error-Correction Code". arXiv:2009.11482 [quant-ph].
- ^ "The Power of Co-Design, Hermanni Heimonen, IQM". Youtube. 2022年12月08日. Retrieved 2023年06月09日.
- ^ "Finland's first 5-qubit quantum computer is now operational". VTTresearch.com. 2022年12月08日. Retrieved 2023年06月09日.
- ^ "Finland launches a 20-qubit quantum computer – development towards more powerful quantum computers continues". meetiqm.com. 2023年10月09日.
- ^ "Finland Unveils Second Quantum Computer with 20 Qubits, Aims for 50-Qubit Device by 2024". quantumzeitgeist.com. 2023年10月10日.
- ^ Pelegrí, G.; Daley, A. J.; Pritchard, J. D. (2022). "High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage". Quantum Science and Technology. 7 (4): 045020. arXiv:2112.13025 . Bibcode:2022QS&T....7d5020P. doi:10.1088/2058-9565/ac823a. S2CID 245502083.
- ^ "MAXWELL: NEUTRAL ATOM QUANTUM PROCESSOR" (PDF). M Squared. Retrieved 12 April 2023.
- ^ "Lucy". Oxford Quantum Circuits. 30 November 2021. Retrieved 20 Feb 2023.
- ^ "OQC Toshiko". Oxford Quantum Circuits. 24 November 2023. Retrieved 27 Nov 2023.
- ^ Pont, M.; Corrielli, G.; Fyrillas, A.; et, al. (2022年11月29日). "High-fidelity generation of four-photon GHZ states on-chip". arXiv:2211.15626 [quant-ph].
- ^ "La puissance d'un ordinateur quantique testée en ligne (The power of a quantum computer tested online)". Le Monde.fr. Le Monde. 22 November 2022.
- ^ "Spin-2". Quantum Inspire. Retrieved 5 May 2021.
- ^ "Six-qubit silicon quantum processor sets a record". PhysicsWorld. 19 October 2022. Retrieved 2023年07月09日.
- ^ "Starmon-5". Quantum Inspire. Retrieved 4 May 2021.
- ^ "Quantinuum H2 Product Data Sheet" (PDF).
- ^ "Quantinuum's H-Series hits 56 physical qubits that are all-to-all connected, and departs the era of classical simulation". www.quantinuum.com. Retrieved 2024年06月06日.
- ^ "Quantinuum Dominates the Quantum Landscape: New World-Record in Quantum Volume". www.quantinuum.com. Retrieved 2025年05月23日.
- ^ a b "Quantinuum System Model H1 Product Data Sheet" (PDF). Quantinuum. Retrieved 8 Jul 2023.
- ^ "Quantinuum extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume". www.quantinuum.com. Retrieved 2024年04月17日.
- ^ "Quantinuum Announces Quantum Volume 4096 Achievement". Quantinuum. Retrieved 24 Feb 2023.
- ^ "Soprano specs". Quantware. Retrieved 1 Feb 2023.
- ^ "Contralto specs". Quantware. Retrieved 21 Feb 2023.
- ^ "QUANTWARE RELEASES 25-QUBIT CONTRALTO QPU". Quantware. Retrieved 21 Feb 2023.
- ^ "Tenor specs". Quantware. Retrieved 26 Feb 2023.
- ^ a b "QPU". Rigetti Computing. Archived from the original on 2019年05月16日. Retrieved 2019年03月24日.
- ^ "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017年12月18日. Retrieved 2018年03月21日.
- ^ "Aspen-M-3 Quantum Processor" . Retrieved 2023年02月20日.
- ^ Rigetti & Company LLC (2024年01月04日). "Rigetti Announces Public Availability of Ankaa-2 System with a 2.5x Performance Improvement Compared to Previous QPUs". GlobeNewswire News Room (Press release). Retrieved 2024年01月23日.
- ^ "Japan's first homemade quantum computer goes online". www.riken.jp. Retrieved 2024年01月25日.
- ^ "Japanese joint research group launches quantum computing cloud service". Fujitsu Global. Retrieved 2024年01月25日.
- ^ "RIKEN and Fujitsu develop 64-qubit quantum computer". www.riken.jp. Retrieved 2024年01月25日.
- ^ "All tests passed: DLR QCI accepts 4-qubit demonstrator SQ-RT with Princess QPU from SaxonQ" . Retrieved 16 Jul 2024.
- ^ "Fraunhofer IWU nimmt Sachsens ersten mobilen Quantencomputer in Betrieb" . Retrieved 12 Jun 2025.
- ^ "Triangulum3 qubits desktop NMR quantum computer". AQT. Retrieved 24 Feb 2023.
- ^ Ball, Philip (2020年12月03日). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7 . PMID 33273711.
- ^ Letzter, Rafi – Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world". livescience.com. Retrieved 2020年12月19日.
{{cite web}}: CS1 maint: numeric names: authors list (link) - ^ Ball, Philip (2020年12月03日). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters. 127 (18) 180501. arXiv:2106.14734 . Bibcode:2021PhRvL.127r0501W. doi:10.1103/PhysRevLett.127.180501. PMID 34767433. S2CID 235658633.
- ^ Zhu, Qingling; et al. (2021). "Quantum Computational Advantage via 60-Qubit 24-Cycle Random Circuit Sampling". Science Bulletin. 67 (3): 240–245. arXiv:2109.03494 . doi:10.1016/j.scib.2021年10月01日7. PMID 36546072. S2CID 237442167.
- ^ Wu, Yulin; Bao, Wan-Su; Cao, Sirui; Chen, Fusheng; Chen, Ming-Cheng; Chen, Xiawei; Chung, Tung-Hsun; Deng, Hui; Du, Yajie; Fan, Daojin; Gong, Ming; Guo, Cheng; Guo, Chu; Guo, Shaojun; Han, Lianchen (2021年10月25日). "Strong Quantum Computational Advantage Using a Superconducting Quantum Processor". Physical Review Letters. 127 (18) 180501. arXiv:2106.14734 . Bibcode:2021PhRvL.127r0501W. doi:10.1103/PhysRevLett.127.180501. ISSN 0031-9007. PMID 34767433. S2CID 235658633.
- ^ Gao, Dongxin; Fan, Daojin; Zha, Chen; Bei, Jiahao; Cai, Guoqing; Cai, Jianbing; Cao, Sirui; Zeng, Xiangdong; Chen, Fusheng; Chen, Jiang; Chen, Kefu; Chen, Xiawei; Chen, Xiqing; Chen, Zhe; Chen, Zhiyuan (2025). "Establishing a New Benchmark in Quantum Computational Advantage with 105-qubit Zuchongzhi 3.0 Processor". Physical Review Letters. 134 (9) 090601. arXiv:2412.11924 . Bibcode:2025PhRvL.134i0601G. doi:10.1103/PhysRevLett.134.090601. PMID 40131086.
- ^ a b c Madsen, Lars S.; Laudenbach, Fabian; Askarani, Mohsen Falamarzi; Rortais, Fabien; Vincent, Trevor; Bulmer, Jacob F. F.; Miatto, Filippo M.; Neuhaus, Leonhard; Helt, Lukas G.; Collins, Matthew J.; Lita, Adriana E. (June 2022). "Quantum computational advantage with a programmable photonic processor". Nature. 606 (7912): 75–81. Bibcode:2022Natur.606...75M. doi:10.1038/s41586-022-04725-x. ISSN 1476-4687. PMC 9159949 . PMID 35650354. S2CID 249276257.
- ^ a b c "A new kind of quantum". spie.org. Retrieved 2021年01月09日.
- ^ "Digital Annealer – Quantum Computing Technology". Fujitsu. Retrieved 12 April 2023.
- ^ a b c d Cai, Jun; Macready, Bill; Roy, Aidan (10 Jun 2014). "A practical heuristic for finding graph minors". arXiv:1406.2741 [quant-ph].
- ^ a b "The AdvantageTM Quantum Computer | D-Wave". dwavequantum.com. Archived from the original on 2023年03月23日. Retrieved 2025年07月27日.
- ^ Boothby, Kelly; Bunyk, Paul; Raymond, Jack; Roy, Aidan (29 Feb 2020). "Next-Generation Topology of D-Wave Quantum Processors". arXiv:2003.00133 [quant-ph].
- ^ "Product Overview | D-Wave". dwavequantum.com. Archived from the original on 2023年03月23日. Retrieved 2025年07月27日.
- ^ a b c "D-Wave Announces 1,200+ Qubit Advantage2TM Prototype in New, Lower-Noise Fabrication Stack, Demonstrating 20x Faster Time-to-Solution on Important Class of Hard Optimization Problems".
- ^ a b c "D-Wave Announces Availability of 1,200+ Qubit Advantage2TM Prototype in the LeapTM Quantum Cloud Service, Making its Most Performant System Available to Customers Today".
- ^ a b "D-Wave Clarity Roadmap: 2023-2024" (PDF). dwavesys.com. November 18, 2024. Retrieved November 18, 2024.
Advantage 2TM quantum system will incorporate a new qubit design that enables 20-way connectivity in a new topology. The Advantage 2 QPU will contain 7000+ qubits and make use of the latest improvements in quantum coherence in a multi-layer fabrication stack, further harnessing the quantum mechanical power of the system for finding better solutions, faster.
- ^ a b c McGeoch, Catherine; Farre, Pau; Boothby, Kelly (June 9, 2022). "The D-wave Advantage2 Prototype: Technical Report" (PDF). Dwavesys.com. Retrieved November 11, 2024.
- ^ a b "D-Wave Announces General Availability of Advantage2 Quantum Computer, Its Most Advanced and Performant System". www.dwavequantum.com. Retrieved 2025年07月24日.
- ^ a b "Ahead of the Game: D-Wave Delivers Prototype of Next-Generation Advantage2 Annealing Quantum Computer".
- ^ Sun, Leo (2025). "Where Will D-Wave Quantum Stock Be in 3 Years?". www.msn.com. The Motley Fool. What will happen to D-wave over the next three years?. Retrieved 2025年07月27日 – via MSN.
- ^ Lee, Jane (2 November 2022). "Boston-based quantum computer QuEra joins Amazon's cloud for public access". Reuters.