Jump to content
Wikipedia The Free Encyclopedia

Hamiltonian quantum computation

From Wikipedia, the free encyclopedia
Form of quantum computing

Hamiltonian quantum computation is a form of quantum computing. Unlike methods of quantum computation such as the adiabatic, measurement-based and circuit model where eternal control is used to apply operations on a register of qubits, Hamiltonian quantum computers operate without external control.[1] [2] [3]

Background

[edit ]

Hamiltonian quantum computation was the pioneering model of quantum computation, first proposed by Paul Benioff in 1980. Benioff's motivation for building a quantum mechanical model of a computer was to have a quantum mechanical description of artificial intelligence and to create a computer that would dissipate the least amount of energy allowable by the laws of physics.[1] However, his model was not time-independent and local.[4] Richard Feynman, independent of Benioff, also wanted to provide a description of a computer based on the laws of quantum physics. He solved the problem of a time-independent and local Hamiltonian by proposing a continuous-time quantum walk that could perform universal quantum computation.[2] Superconducting qubits,[5] Ultracold atoms and non-linear photonics [6] have been proposed as potential experimental implementations of Hamiltonian quantum computers.

Definition

[edit ]

Given a list of quantum gates described as unitaries U 1 , U 2 . . . U k {\displaystyle U_{1},U_{2}...U_{k}} {\displaystyle U_{1},U_{2}...U_{k}}, define a hamiltonian

H = i = 1 k 1 | i + 1 i | U i + 1 + | i i + 1 | U i + 1 {\displaystyle H=\sum _{i=1}^{k-1}|i+1\rangle \langle i|\otimes U_{i+1}+|i\rangle \langle i+1|\otimes U_{i+1}^{\dagger }} {\displaystyle H=\sum _{i=1}^{k-1}|i+1\rangle \langle i|\otimes U_{i+1}+|i\rangle \langle i+1|\otimes U_{i+1}^{\dagger }}

Evolving this Hamiltonian on a state | ϕ 0 = | 100..00 | ψ 0 {\displaystyle |\phi _{0}\rangle =|100..00\rangle \otimes |\psi _{0}\rangle } {\displaystyle |\phi _{0}\rangle =|100..00\rangle \otimes |\psi _{0}\rangle } composed of a clock register ( | 100..00 {\displaystyle |100..00\rangle } {\displaystyle |100..00\rangle }) that constaines k + 1 {\displaystyle k+1} {\displaystyle k+1} qubits and a data register ( | ψ 0 {\displaystyle |\psi _{0}\rangle } {\displaystyle |\psi _{0}\rangle }) will output | ϕ k = e i H t | ϕ 0 {\displaystyle |\phi _{k}\rangle =e^{-iHt}|\phi _{0}\rangle } {\displaystyle |\phi _{k}\rangle =e^{-iHt}|\phi _{0}\rangle }. At a time t {\displaystyle t} {\displaystyle t}, the state of the clock register can be | 000..01 {\displaystyle |000..01\rangle } {\displaystyle |000..01\rangle }. When that happens, the state of the data register will be U 1 , U 2 . . . U k | ψ 0 {\displaystyle U_{1},U_{2}...U_{k}|\psi _{0}\rangle } {\displaystyle U_{1},U_{2}...U_{k}|\psi _{0}\rangle }. The computation is complete and | ϕ k = | 000..01 U 1 , U 2 . . . U k | ψ 0 {\displaystyle |\phi _{k}\rangle =|000..01\rangle \otimes U_{1},U_{2}...U_{k}|\psi _{0}\rangle } {\displaystyle |\phi _{k}\rangle =|000..01\rangle \otimes U_{1},U_{2}...U_{k}|\psi _{0}\rangle }.[7]

See also

[edit ]

References

[edit ]
  1. ^ a b Benioff Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/BF01011339.
  2. ^ a b Feynman, Richard P. (1986). "Quantum mechanical computers". Foundations of Physics. 16 (6): 507–531. Bibcode:1986FoPh...16..507F. doi:10.1007/BF01886518.
  3. ^ Janzing, Dominik (2007). "Spin-1∕2 particles moving on a two-dimensional lattice with nearest-neighbor interactions can realize an autonomous quantum computer". Physical Review A. 75 (1) 012307. arXiv:quant-ph/0506270 . doi:10.1103/PhysRevA.75.012307.
  4. ^ LLoyd, Seth (1993). "Review of quantum computation". Vistas in Astronomy. 37: 291–295. doi:10.1016/0083-6656(93)90051-K.
  5. ^ Ciani, A.; Terhal, B. M.; DiVincenzo, D. P. (2019). "Hamiltonian quantum computing with superconducting qubits". IOP Publishing. 4 (3): 035002. arXiv:1310.5100 . doi:10.1088/2058-9565/ab18dd.
  6. ^ Lahini, Yoav; Steinbrecher, Gregory R.; Bookatz, Adam D.; Englund, Dirk (2018). "Quantum logic using correlated one-dimensional quantum walks". npj Quantum Information. 4 (1): 2. arXiv:1501.04349 . doi:10.1038/s41534-017-0050-2.
  7. ^ Costales, R. J.; Gunning, A.; Dorlas, T. (2025). "Efficiency of Feynman's quantum computer". Physical Review A. 111 (2) 022615. arXiv:2309.09331 . doi:10.1103/PhysRevA.111.022615.
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming

AltStyle によって変換されたページ (->オリジナル) /