Class CodeGenerationModel (1.122.0)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
   
 
 
 
 
 - 1.122.0 (latest)
 - 1.121.0
 - 1.120.0
 - 1.119.0
 - 1.118.0
 - 1.117.0
 - 1.95.1
 - 1.94.0
 - 1.93.1
 - 1.92.0
 - 1.91.0
 - 1.90.0
 - 1.89.0
 - 1.88.0
 - 1.87.0
 - 1.86.0
 - 1.85.0
 - 1.84.0
 - 1.83.0
 - 1.82.0
 - 1.81.0
 - 1.80.0
 - 1.79.0
 - 1.78.0
 - 1.77.0
 - 1.76.0
 - 1.75.0
 - 1.74.0
 - 1.73.0
 - 1.72.0
 - 1.71.1
 - 1.70.0
 - 1.69.0
 - 1.68.0
 - 1.67.1
 - 1.66.0
 - 1.65.0
 - 1.63.0
 - 1.62.0
 - 1.60.0
 - 1.59.0
 
CodeGenerationModel(model_id: str, endpoint_name: typing.Optional[str] = None)Creates a LanguageModel.
This constructor should not be called directly.
Use LanguageModel.from_pretrained(model_name=...) instead.
Methods
batch_predict
batch_predict(
 *,
 dataset: typing.Union[str, typing.List[str]],
 destination_uri_prefix: str,
 model_parameters: typing.Optional[typing.Dict] = None
) -> google.cloud.aiplatform.jobs.BatchPredictionJobStarts a batch prediction job with the model.
| Exceptions | |
|---|---|
| Type | Description | 
ValueError | 
 When source or destination URI is not supported. | 
from_pretrained
from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.TLoads a _ModelGardenModel.
| Exceptions | |
|---|---|
| Type | Description | 
ValueError | 
 If model_name is unknown. | 
ValueError | 
 If model does not support this class. | 
get_tuned_model
get_tuned_model(
 tuned_model_name: str,
) -> vertexai.language_models._language_models._LanguageModelLoads the specified tuned language model.
list_tuned_model_names
list_tuned_model_names() -> typing.Sequence[str]Lists the names of tuned models.
predict
predict(
 prefix: str,
 suffix: typing.Optional[str] = None,
 *,
 max_output_tokens: typing.Optional[int] = None,
 temperature: typing.Optional[float] = None,
 stop_sequences: typing.Optional[typing.List[str]] = None,
 candidate_count: typing.Optional[int] = None
) -> vertexai.language_models.TextGenerationResponseGets model response for a single prompt.
predict_async
predict_async(
 prefix: str,
 suffix: typing.Optional[str] = None,
 *,
 max_output_tokens: typing.Optional[int] = None,
 temperature: typing.Optional[float] = None,
 stop_sequences: typing.Optional[typing.List[str]] = None,
 candidate_count: typing.Optional[int] = None
) -> vertexai.language_models.TextGenerationResponseAsynchronously gets model response for a single prompt.
predict_streaming
predict_streaming(
 prefix: str,
 suffix: typing.Optional[str] = None,
 *,
 max_output_tokens: typing.Optional[int] = None,
 temperature: typing.Optional[float] = None,
 stop_sequences: typing.Optional[typing.List[str]] = None
) -> typing.Iterator[vertexai.language_models.TextGenerationResponse]Predicts the code based on previous code.
The result is a stream (generator) of partial responses.
predict_streaming_async
predict_streaming_async(
 prefix: str,
 suffix: typing.Optional[str] = None,
 *,
 max_output_tokens: typing.Optional[int] = None,
 temperature: typing.Optional[float] = None,
 stop_sequences: typing.Optional[typing.List[str]] = None
) -> typing.AsyncIterator[vertexai.language_models.TextGenerationResponse]Asynchronously predicts the code based on previous code.
The result is a stream (generator) of partial responses.
tune_model
tune_model(
 training_data: typing.Union[str, pandas.core.frame.DataFrame],
 *,
 train_steps: typing.Optional[int] = None,
 learning_rate_multiplier: typing.Optional[float] = None,
 tuning_job_location: typing.Optional[str] = None,
 tuned_model_location: typing.Optional[str] = None,
 model_display_name: typing.Optional[str] = None,
 tuning_evaluation_spec: typing.Optional[
 vertexai.language_models.TuningEvaluationSpec
 ] = None,
 accelerator_type: typing.Optional[typing.Literal["TPU", "GPU"]] = None,
 max_context_length: typing.Optional[str] = None
) -> vertexai.language_models._language_models._LanguageModelTuningJobTunes a model based on training data.
This method launches and returns an asynchronous model tuning job. Usage:
tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete
| Exceptions | |
|---|---|
| Type | Description | 
ValueError | 
 If the "tuning_job_location" value is not supported | 
ValueError | 
 If the "tuned_model_location" value is not supported | 
RuntimeError | 
 If the model does not support tuning |