Class GenerativeModel (1.122.0)

GenerativeModel(
 model_name: str,
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None,
 tool_config: typing.Optional[
 vertexai.generative_models._generative_models.ToolConfig
 ] = None,
 system_instruction: typing.Optional[PartsType] = None,
 labels: typing.Optional[typing.Dict[str, str]] = None
)

Initializes GenerativeModel.

Usage:

```
model = GenerativeModel("gemini-pro")
print(model.generate_content("Hello"))
```

Methods

compute_tokens

compute_tokens(
 contents: ContentsType,
) -> google.cloud.aiplatform_v1beta1.types.llm_utility_service.ComputeTokensResponse

Computes tokens.

Returns
Type Description
A ComputeTokensResponse object that has the following attributes tokens_info: Lists of tokens_info from the input. The input contents: ContentsType could have multiple string instances and each tokens_info item represents each string instance. Each token info consists tokens list, token_ids list and a role.

compute_tokens_async

compute_tokens_async(
 contents: ContentsType,
) -> google.cloud.aiplatform_v1beta1.types.llm_utility_service.ComputeTokensResponse

Computes tokens asynchronously.

Returns
Type Description
And awaitable for a ComputeTokensResponse object that has the following attributes tokens_info: Lists of tokens_info from the input. The input contents: ContentsType could have multiple string instances and each tokens_info item represents each string instance. Each token info consists tokens list, token_ids list and a role.

count_tokens

count_tokens(
 contents: ContentsType,
 *,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None
) -> google.cloud.aiplatform_v1beta1.types.prediction_service.CountTokensResponse

Counts tokens.

Returns
Type Description
A CountTokensResponse object that has the following attributes total_tokens: The total number of tokens counted across all instances from the request. total_billable_characters: The total number of billable characters counted across all instances from the request.

count_tokens_async

count_tokens_async(
 contents: ContentsType,
 *,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None
) -> google.cloud.aiplatform_v1beta1.types.prediction_service.CountTokensResponse

Counts tokens asynchronously.

Returns
Type Description
And awaitable for a CountTokensResponse object that has the following attributes total_tokens: The total number of tokens counted across all instances from the request. total_billable_characters: The total number of billable characters counted across all instances from the request.

from_cached_content

from_cached_content(
 cached_content: typing.Union[str, CachedContent],
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None
) -> _GenerativeModel

Creates a model from cached content.

Creates a model instance with an existing cached content. The cached content becomes the prefix of the requesting contents.

generate_content

generate_content(
 contents: ContentsType,
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None,
 tool_config: typing.Optional[
 vertexai.generative_models._generative_models.ToolConfig
 ] = None,
 labels: typing.Optional[typing.Dict[str, str]] = None,
 stream: bool = False
) -> typing.Union[
 vertexai.generative_models._generative_models.GenerationResponse,
 typing.Iterable[vertexai.generative_models._generative_models.GenerationResponse],
]

Generates content.

generate_content_async

generate_content_async(
 contents: ContentsType,
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None,
 tool_config: typing.Optional[
 vertexai.generative_models._generative_models.ToolConfig
 ] = None,
 labels: typing.Optional[typing.Dict[str, str]] = None,
 stream: bool = False
) -> typing.Union[
 vertexai.generative_models._generative_models.GenerationResponse,
 typing.AsyncIterable[
 vertexai.generative_models._generative_models.GenerationResponse
 ],
]

Generates content asynchronously.

set_request_response_logging_config

set_request_response_logging_config(
 *,
 enabled: bool,
 sampling_rate: float,
 bigquery_destination: str,
 enable_otel_logging: typing.Optional[bool] = None
) -> typing.Union[
 google.cloud.aiplatform_v1beta1.types.endpoint.PublisherModelConfig,
 google.cloud.aiplatform_v1beta1.types.endpoint.Endpoint,
]

Sets the request/response logging config.

start_chat

start_chat(
 *,
 history: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Content]
 ] = None,
 response_validation: bool = True,
 responder: typing.Optional[
 vertexai.generative_models._generative_models.AutomaticFunctionCallingResponder
 ] = None
) -> vertexai.generative_models._generative_models.ChatSession

Creates a stateful chat session.

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.