Class GenerativeModel (1.85.0)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
   
 
 
 
 
 - 1.122.0 (latest)
 - 1.121.0
 - 1.120.0
 - 1.119.0
 - 1.118.0
 - 1.117.0
 - 1.95.1
 - 1.94.0
 - 1.93.1
 - 1.92.0
 - 1.91.0
 - 1.90.0
 - 1.89.0
 - 1.88.0
 - 1.87.0
 - 1.86.0
 - 1.85.0
 - 1.84.0
 - 1.83.0
 - 1.82.0
 - 1.81.0
 - 1.80.0
 - 1.79.0
 - 1.78.0
 - 1.77.0
 - 1.76.0
 - 1.75.0
 - 1.74.0
 - 1.73.0
 - 1.72.0
 - 1.71.1
 - 1.70.0
 - 1.69.0
 - 1.68.0
 - 1.67.1
 - 1.66.0
 - 1.65.0
 - 1.63.0
 - 1.62.0
 - 1.60.0
 - 1.59.0
 
GenerativeModel(
 model_name: str,
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None,
 tool_config: typing.Optional[
 vertexai.generative_models._generative_models.ToolConfig
 ] = None,
 system_instruction: typing.Optional[PartsType] = None,
 labels: typing.Optional[typing.Dict[str, str]] = None
)Initializes GenerativeModel.
Usage:
```
model = GenerativeModel("gemini-pro")
print(model.generate_content("Hello"))
```
Methods
compute_tokens
compute_tokens(
 contents: ContentsType,
) -> google.cloud.aiplatform_v1beta1.types.llm_utility_service.ComputeTokensResponseComputes tokens.
| Returns | |
|---|---|
| Type | Description | 
A ComputeTokensResponse object that has the following attributes | 
 tokens_info: Lists of tokens_info from the input. The input contents: ContentsType could have multiple string instances and each tokens_info item represents each string instance. Each token info consists tokens list, token_ids list and a role. | 
 
compute_tokens_async
compute_tokens_async(
 contents: ContentsType,
) -> google.cloud.aiplatform_v1beta1.types.llm_utility_service.ComputeTokensResponseComputes tokens asynchronously.
| Returns | |
|---|---|
| Type | Description | 
And awaitable for a ComputeTokensResponse object that has the following attributes | 
 tokens_info: Lists of tokens_info from the input. The input contents: ContentsType could have multiple string instances and each tokens_info item represents each string instance. Each token info consists tokens list, token_ids list and a role. | 
 
count_tokens
count_tokens(
 contents: ContentsType,
 *,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None
) -> google.cloud.aiplatform_v1beta1.types.prediction_service.CountTokensResponseCounts tokens.
| Returns | |
|---|---|
| Type | Description | 
A CountTokensResponse object that has the following attributes | 
 total_tokens: The total number of tokens counted across all instances from the request. total_billable_characters: The total number of billable characters counted across all instances from the request. | 
count_tokens_async
count_tokens_async(
 contents: ContentsType,
 *,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None
) -> google.cloud.aiplatform_v1beta1.types.prediction_service.CountTokensResponseCounts tokens asynchronously.
| Returns | |
|---|---|
| Type | Description | 
And awaitable for a CountTokensResponse object that has the following attributes | 
 total_tokens: The total number of tokens counted across all instances from the request. total_billable_characters: The total number of billable characters counted across all instances from the request. | 
from_cached_content
from_cached_content(
 cached_content: typing.Union[str, CachedContent],
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None
) -> _GenerativeModelCreates a model from cached content.
Creates a model instance with an existing cached content. The cached content becomes the prefix of the requesting contents.
generate_content
generate_content(
 contents: ContentsType,
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None,
 tool_config: typing.Optional[
 vertexai.generative_models._generative_models.ToolConfig
 ] = None,
 labels: typing.Optional[typing.Dict[str, str]] = None,
 stream: bool = False
) -> typing.Union[
 vertexai.generative_models._generative_models.GenerationResponse,
 typing.Iterable[vertexai.generative_models._generative_models.GenerationResponse],
]Generates content.
generate_content_async
generate_content_async(
 contents: ContentsType,
 *,
 generation_config: typing.Optional[GenerationConfigType] = None,
 safety_settings: typing.Optional[SafetySettingsType] = None,
 tools: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Tool]
 ] = None,
 tool_config: typing.Optional[
 vertexai.generative_models._generative_models.ToolConfig
 ] = None,
 labels: typing.Optional[typing.Dict[str, str]] = None,
 stream: bool = False
) -> typing.Union[
 vertexai.generative_models._generative_models.GenerationResponse,
 typing.AsyncIterable[
 vertexai.generative_models._generative_models.GenerationResponse
 ],
]Generates content asynchronously.
start_chat
start_chat(
 *,
 history: typing.Optional[
 typing.List[vertexai.generative_models._generative_models.Content]
 ] = None,
 response_validation: bool = True,
 responder: typing.Optional[
 vertexai.generative_models._generative_models.AutomaticFunctionCallingResponder
 ] = None
) -> vertexai.generative_models._generative_models.ChatSessionCreates a stateful chat session.